2种引起气候变化的温室气体包括二氧化碳(CO2) - 由于化石燃料(煤炭,天然气和石油)燃烧而进入大气;甲烷(CH4) - 在化石燃料的生产和运输过程中以及牲畜(某些类型的牲畜的消化系统)发出,称为反刍动物,例如牛,绵羊,山羊和其他农业实践,以及有机废物;和一氧化二氮(N2O) - 由于使用肥料,废水处理等,在耕种期间发出。后两种气体通常基于它们对气候变化的相对影响,即全球变暖潜力(GWP)。甲烷的GWP是100年来CO2的27-30倍,而一氧化二氮的GWP为273倍CO2倍(Joiner and Toman,2023)。
2种引起气候变化的温室气体包括二氧化碳(CO2) - 由于化石燃料(煤炭,天然气和石油)燃烧而进入大气;甲烷(CH4) - 在化石燃料的生产和运输过程中以及牲畜(某些类型的牲畜的消化系统)发出,称为反刍动物,例如牛,绵羊,山羊和其他农业实践,以及有机废物;和一氧化二氮(N2O) - 由于使用肥料,废水处理等,在耕种期间发出。后两种气体通常基于它们对气候变化的相对影响,即全球变暖潜力(GWP),通常将其转换为“二氧化碳等效碳”(CO2E)。甲烷的GWP是100年来CO2的27-30倍,而一氧化二氮的GWP为273倍CO2倍(Joiner and Toman,2023)。
我们是环境管理与评估研究所(IEMA)。我们是全球专业机构,适用于22,000多名个人和300个组织,研究或对环境和可持续性感兴趣。我们是可持续发展议程中心的专业组织,将业务和个人跨行业,部门和边界联系起来。我们还帮助和支持公共和私营部门组织,政府和监管机构在环境和可持续性与相关计划,挑战和机遇方面做正确的事。我们致力于影响环境和可持续性事务的公共政策。我们通过利用成员的见解和经验来确保实践中发生的事情影响政府政策,立法,法规和标准的制定。
1气候和大气研究中心(CARE-C),塞浦路斯研究所,Konstantinou Kavafi Street,Aglantzia,Aglantzia,Nicosia,Nicosia,2121,塞浦路斯2高绩效计算设施(HPCF),塞浦路斯,塞浦路斯,塞浦路斯,塞浦路斯研究所,20 Konstantinou Kavafi Street,Aglantzia,nicepeia,212121212 University Faculty of Science, VERG Laboratories, Beytepe-Ankara, 06800, Turkey 4 Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Piazzale Aldo Moro 5, Lazio-Rome, 00185, Italy 5 Faculty of Agriculture, University of Novi Sad, Laboratory for Medical and Veterinary Entomology, Novi Sad, 21000, Serbia 6 Medical School,塞浦路斯大学,阿格兰兹亚大学,尼科西亚,2029年,塞浦路斯7生命科学系,自然科学系,伦敦帝国学院,南肯辛顿校园,伦敦,英国,英国SW7 2AZ,英国8大气化学系,Max Planck Institute,Max Planck Institute,Maxk Mainz,Mainz,Mainz,D-55128,德国,D-55128,DIV>
项目详细信息:平流层气溶胶是气候系统最重要的强迫之一,通常通过太阳辐射的散射和吸收来导致地球的全球尺度表面冷却。大型火山喷发一直是平流层气溶胶层的主要贡献者,计算廉价的数值模型可用于预测来自火山硫等先例的排放中的气溶胶光学特性和气候强迫。这样的模型对于提供气候模型所需的输入至关重要,并了解平流层气溶胶的过去和未来气候影响。但是,现有模型并不能很好地捕获火山喷发幅度,纬度和羽高度如何调节气溶胶光学特性。此外,持续的气候变化可能会大大改变平流层气溶胶的来源。越来越强烈的野生火力是由快速变暖的推动力,现在通常会产生足够高的羽毛,足以将气溶胶注入平流层。不受控制的气候变化的观点也加强了关于研究和潜在部署平流层气溶胶注入地球工程的争论,以积极冷却我们的星球。
7départementdeGéographie,蒙特利尔大学,蒙特利尔大学,QC,加拿大,8个环境,paléoenvironnementsCéaniquironementocéaniqueset contonentaux(Epoc)(Epoc),de Bordeaux,Bordeaux,Bordeaux,Bordeaux,France,France,France,Bern,National and Intern,Intern,Intern,Intern,Intern,Intern,Internize Climate and 10 Bandung, Indonesia, 11 Laboratoire de Planetologie et Geoscience, UMR6112, Nantes Université, Nantes, France, 12 Climate Change Research Centre, University of New South Wales, Sydney, NSW, Australia, 13 ARC Centre of Excellence for Climate Extremes, Sydney, NSW, Australia, 14 Department of Geosciences, Princeton University, Princeton, NJ, United States, 15 NSF National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, CO, United States, 16 Laboratory of Ocean and Atmosphere Studies (LOA), Earth Observation and Geoinformatics Division (DIOTG), National Institute for Space Research (INPE), São Paulo, Brazil, 17 Department of Environmental Sciences, Statistics, and Informatics, Ca' Foscari University of Venice, Venice, Italy, 18 MARUM – Center for Marine Environmental科学,不来梅大学,不来梅,德国,19伍兹霍尔海洋学机构,伍兹霍尔,马萨诸塞州,美国,20英国南极调查,剑桥,英国,英国,21 NSF国家大气研究,气候和全球动态实验室,Boulder,Boulder,CO,美国CO,美国,美国各州
气候变化对下部Ouémé山谷中人口的健康产生负面影响。这些对自然和物理系统的影响会影响脆弱的人,并使他们更多地暴露于营养不良,媒介传播,不可传播,饮食传播或水传播疾病和人畜共患病的风险。,限制了医院传染风险的控制的约束是什么?这项研究是卫生社会学的一部分,旨在改善Ajjohoun,Bonou和Dangbo健康区域对疟疾,心血管疾病和急性呼吸道感染的弱势当地社区的韧性。方法论方法基于定量数据和话语分析,以确定医院和卫生中心的组织和技术能力。在03个市政当局中,总共有93个参与者,每个市政当局随机捕获31人。来源进行三角剖分后,结果表明,气候信息与疾病监测的整合使健康预警系统有效。然后,加强卫生人员的运营能力,以确保人口对气候风险的弹性至关重要。最后,通过提供适合气候变化的可持续设备和技术来提高健康中心的技术能力是应对新的健康挑战的一种方式。
摘要本评论文章探讨了Amaranth的多方面旅程,Amaranth曾经是一种谦虚的农作物,作为营养力量和气候富裕的超级食品而引人注目。它深入探究了阿甘特斯的营养奇迹,突出了其对其他农作物的胜利及其独特的健康益处,包括加强健康防御和提供无麸质替代品。面对气候挑战的Amaranth的韧性得到了强调,展示了其在逆境中繁衍生息的能力,违背了土壤对抗,燃料土壤活力并充当防寒冠军。本文还强调了Amaranth在全球粮食安全,解决营养不良以及有望提高的收益率上的重要性。该评论进一步探讨了菜菜种植的创新冒险和机会,包括革命性的繁殖技术,基因组进步,机械化和市场潜力。采取行动的呼吁强调了需要拥抱菜am的非凡潜力,点燃其种植革命,将其融入烹饪实践并绘制未来的研究前沿。审查结束了,揭露挑战并概述了对未来的研究和政策的影响,巩固了Amaranth作为转化粮食系统的重要组成部分的地位,并确保食品和营养安全。
•Lindborg,T.,Thorne,M.,Andersson,E.,Becker,J.,Brandefelt,J.,Cabianca,T.,Gunia,M.,Ikonen,A.T.K.,Johansson,E.,Kangasniemi,v. Kuntula,A.,Kupia,P.,Lahden,A.M. Walkes,R.,Xu,S.,Smith,G。&Prruhl,G。:CCOSUSE后的Safetys或Solid Radioactives或计划或计划或IAEA,IAEA,期刊或环境重新行动中的Changle和Landcape Development的气候。183,41-53,2018。
氧同位素(δ18o)是最常用的speleothem代理,并提供了许多古气候的基础记录。因此,影响speleothemΔ18O的静止过程至关重要。然而,由局部水文学驱动的过程(PCP)是一个被广泛忽略的对Speleothemδ18O的过程。在这里,我们研究了pcp对越南中部的斯塔比米特δ18记录的影响,跨越45 - 4 ka。我们采用一个地球化学模型,该模型利用speleothem mg/ca和洞穴监测数据来纠正δ18o PCP效应的记录。所得记录与区域speleothemδ18o记录和气候模型模拟的一致性提高,表明校正后的记录更准确地反映了降水δ18o(δ18o P)。没有考虑PCP,我们对δ18o记录的解释将是误导的。避免对Speleothemδ18O的误解,我们的结果强调了将PCP视为Speleothemδ18O.