耦合飞行动力学、空气力学和气动声学模拟 § 线性化、稳定性、降阶、控制 § 实时空气力学和声学 § 实时交互空气动力学 § 旋翼飞行器(直升机、倾转旋翼机等)§ 扑翼微型飞行器(昆虫、鸟类) 先进飞行控制系统 § 旋翼机飞行控制系统 § 主动降噪飞行控制律 § 主动旋翼振动飞行控制律 感知建模和飞行员提示方法 § 全身触觉反馈 § 多模态飞行员建模 § 自转/舰载着陆提示算法
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 05 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与当地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
摘要 — 本研究描述了实验空气动力学研究中心 (CPAERO) 最近的活动,包括致力于发展用于解决基础和工业流动问题的实验和数值空气动力学和气动声学技术能力的所有努力。尽管巴西政府在过去十年中资源投入较少且机构政策出现分歧,但在过去的 5 年里,已经能够建造一个中型低速亚音速风洞,并购买、设计和建造各种用于实验室和露天研究的设备。主要活动是在航空、汽车和风能等替代能源领域开展的。但是,流体结构相互作用、无人机噪声以及风洞和风速传感器校准等领域的其他应用正在开发中。为了支持实验研究,特别关注计算空气动力学,通过使用开源代码来设计翼型、机翼和计算流体动力学 (CFD) 中更复杂的流体模拟。与本地和国家公司的接口正在不断增加,以及与其他大学和研究中心的研究合作伙伴。本文介绍了一些非常规飞机分析、商用车(如轿车和皮卡的空气动力学)、不同纵横比的圆柱体上的流动以及有限高度表面安装圆柱体的实验和数值数据的结果。提供了用于设计小型水平轴风力涡轮机 (HAWT) 仿生叶片的最新方法和新方法。还将气动声学数值数据与自由流和横流条件下亚音速喷气机的实验数据进行了比较,显示了 CPAERO 工具和能力的灵活性。
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。首选设置还受空气动力学或噪声测量优先级的影响。由于存在保持雷诺数(惯性力与粘性力之比)的问题,风洞也可以加压并在低温下运行。另一个挑战是,通常需要在非常高的声频下工作,尤其是对于小比例模型。由于使用比例模型产生的噪声频率与模型的大小成反比,这也对声学数据采集和分析系统的能力提出了挑战。
为了实现航空工业的精确气动声学测量,对主要用于气动测试的低速风洞进行了改造,以提供更低的背景噪声环境。根据风洞不同位置的单个麦克风的数据和测试段内的麦克风相控阵测量结果,确定了主要噪声源,并实施了可行的替代方案来降低背景噪声,例如在驱动系统上游安装新的经过声学处理的角叶片和侧壁衬里。还研究了测试段的声学透明概念,结果显示风洞的进一步改进很有希望。给出了风洞不同位置的单个麦克风测量结果以及测试段内波束形成阵列的声压级结果。改进前后的背景噪声测量证实,气动声学测试的能力显著提高,测试段内的噪声降低了 5 dB。
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。 测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。 首选设置还受空气动力学或噪声测量优先级的影响。 由于存在保持雷诺数(惯性力与粘性力的比率)的问题,风洞也可以加压并在低温下运行。 另一个挑战是,它通常需要在非常高的声频下工作,特别是对于小比例模型。 由于使用比例模型产生的噪声频率与模型的大小成反比,因此这也对声学数据采集和分析系统的能力提出了挑战。
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。首选设置还受空气动力学或噪声测量优先级的影响。由于存在保持雷诺数(惯性力与粘性力之比)的问题,风洞也可以加压并在低温下运行。另一个挑战是,通常需要在非常高的声频下工作,尤其是对于小比例模型。由于使用比例模型产生的噪声频率与模型的大小成反比,这也对声学数据采集和分析系统的能力提出了挑战。
开路风洞与闭路风洞 开路风洞、消声风洞和闭路风洞均用于研究各种流动引起的噪声现象的空气动力学和气动声学。 测试设施的选择主要取决于应用类型、设计速度和所需的模型比例。 首选设置还受空气动力学或噪声测量优先级的影响。 由于存在保持雷诺数(惯性力与粘性力的比率)的问题,风洞也可以加压并在低温下运行。 另一个挑战是,它通常需要在非常高的声频下工作,特别是对于小比例模型。 由于使用比例模型产生的噪声频率与模型的大小成反比,因此这也对声学数据采集和分析系统的能力提出了挑战。