计算机编程 工程图形学 数学-I 工程物理-I 工程化学-I 技术英语-I 工程力学 基础电气和电子工程 技术英语-II 工程物理-II 工程化学-II 数学-II 固体力学 航空工程热力学 航空学要素 变换和偏微分方程 制造技术 流体力学与机械 机械力学 空气动力学-I 飞机系统与仪器 数值方法 飞机结构-I 推进-I 飞行动力学 飞机结构-II 空气动力学-II 推进-II 控制工程 环境科学与工程 飞机材料与工艺 有限元方法 振动与气动弹性要素 复合材料与结构 弹性理论 飞机通用工程与维护实践 空间力学 传热 管理原理 航空电子学 计算流体动力学 无人机系统 疲劳与断裂
国际滑翔科学技术组织 (OSTIV) 第 34 届大会于 2018 年 7 月 28 日至 8 月 3 日在捷克共和国霍辛举行的第 35 届 FAI 世界滑翔锦标赛 18 米、20 米和公开级赛场举行。OSTIV 大会讨论了滑翔飞行的所有科学和技术方面。2018 年大会有来自全球 10 个国家的演讲。这些贡献描述了大气对流和大气波气象领域的新知识。关于滑翔机技术的演讲包括滑翔机设计和性能、空气动力学、气动弹性、负载和推进等领域,而进一步的贡献则涵盖了培训和安全的各个方面。本届大会论文集将带领与会者完成为期一周的会议计划,并将演讲的详细摘要向公众开放。
关键词:飞机设计 摘要 HondaJet 是一款先进的轻型公务机,与现有的小型公务机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
摘要 HondaJet 是一款先进的轻型商务喷气机,与现有的小型商务喷气机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
本文介绍了一种利用自动化工具在概念设计过程早期考虑机翼结构刚度和气动弹性的方法。由于机翼非结构质量(如燃油负荷和控制面)的不确定性和可变性很高,因此在概念设计过程中,可以用随机模型很好地表示刚度和气动弹性。为了实现这一点,我们改进了现有的设计工具,利用基于规则的自动化设计从特定的机翼外模线生成机翼扭矩盒几何形状。对挠度和推断刚度的简单分析表明,早期概念设计选择会强烈影响结构刚度。本文讨论了设计选择的影响以及屈曲约束如何在特定示例中驱动结构重量。本文为未来进一步研究的模型做准备,包括有限元模型 (FEM),用于分析所得的模态形状和频率,以用于气动弹性分析。
进行了一项分析研究,以确定 2.7 马赫箭翼超音速巡航飞机主机翼和机身结构设计的最佳结构方法。考虑近期开始设计来评估概念。重点放在热应力、静态气动弹性、颤振、疲劳和故障安全设计、静态和动态载荷之间的复杂相互作用,以及结构布置、概念和材料变化对这些相互作用的影响。结果表明,采用钛合金 6A1-4V 的低轮廓凸珠和蜂窝夹层表面板的混合机翼结构效率最高。下部结构包括用硼-聚酰亚胺复合材料加固的钛合金翼梁帽。机身外壳由 6 ~ - 4 v 钛合金帽形加固蒙皮和框架结构组成。本报告总结了研究成果,并讨论了超音速巡航飞机设计的整体研究逻辑、设计理念和分析方法之间的相互作用。
能够对系统的结构性能和可靠性进行评估。与叶片振动监测相关的主要技术挑战之一源于复杂的动力学和内在的不确定性,这使得基于模拟的方法难以实现。因此,振动特性的数值研究应基于可靠、有效的气动弹性模型,该模型应能够将结构部分和气动部分耦合。前者通常用等效梁单元建模,而 WT 的典型气动建模方法包括叶片单元动量 (BEM) 理论、执行器线模型、升力面板和涡流模型以及计算流体动力学 (CFD) 方法。执行器线 6 以及升力面板和涡流模型 7 旨在提供改进的尾流建模;然而,两者都各有弱点,前者需要求解 Navier-Stokes 方程,计算量大;后者由于方法的内在奇异性而存在发散问题。8 另一方面,CFD 分析正受到广泛关注,尽管目前已发现其对于大攻角不可靠。9 此外,由于计算需求的增加,它们的适用性仍然受到限制。10 因此,BEM 理论已成为预测 WT 叶片上气动载荷的标准工业实践,这归功于它能够使用翼型气动数据提供准确且计算效率高的结果。除了上述成熟的气动模型外,还提出了各种替代方法。 Zhang 和 Huang 10 对此进行了广泛的综述研究,重点关注了不稳定性问题、复杂流入效应、结构非线性以及 CFD 和气动水弹性分析。仅就气动部分而言,Lee 等人 11 提出了使用改进的条带理论进行气动弹性分析,同时还提出了一种基于谐波平衡法的气动弹性方案,12 大大减少了计算时间,并且证明比标准 BEM 方法更为稳健。13 通过使用三维模型进行数值研究,进一步研究了结冰对叶片气动行为的影响。一类更复杂的方法是基于 CFD 的分析,9,14 事实证明,这种方法与标准工业工具(如疲劳、空气动力学、结构和湍流 (FAST))具有合理的一致性。对于结构模型,除了标准方法(包括等效梁的构造)之外,还提出了其他方法,15包括可以适应大型叶片中遇到的大多数特征的薄壁梁模型 16,例如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损坏的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型之间的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片来说可以忽略不计,但对于大型柔性叶片来说并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,如任意层压板铺层和剪切变形,以及考虑动态载荷引起的渐进损伤的模型,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型不能考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显着的几何非线性。此外,随着当今风力涡轮机尺寸的增大,叶片也变得更加灵活,几何非线性引起的耦合效应也变得越来越重要。24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于较大的风力涡轮机来说越来越重要。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,17 等等。最后,Peeters 等人 18 对叶片的壳和固体有限元 (FE) 模型的静态行为进行了有趣的比较研究。工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身或风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会出现显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由于几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,工业应用中的大部分标准实践都包含在许多可用的气动弹性软件中,例如水平轴风力涡轮机分析和模拟程序 (PHATAS)、19 GH-Bladed、20 ASHES、21 和 FAST。22 大多数商用模拟器都基于线性弹性模型,这些模型无法考虑大位移对响应本身和风荷载的影响。虽然这些影响对于小型叶片可以忽略不计,但对于大型和柔性叶片而言并非如此,23 它们通常会经历显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。 24,25 在用于气动弹性建模的各种内部代码 26 和软件中,水平轴风力涡轮机模拟代码第二代(HAWC2)27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT) 28,29,这对于较大的风力涡轮机来说越来越重要,它本质上提供了变形梁几何的精确表示。然而,与典型的基于位移的 GEBT 公式的解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。 31 该公式最近才得以实施和验证 32,随后进一步与 BEM 理论融合,开发出了一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数进行增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,大型柔性叶片则不然,23 这类叶片通常存在显著的几何非线性。此外,随着当今风力涡轮机尺寸的增加,叶片也变得更加灵活,由几何非线性引起的耦合效应变得越来越重要。24,25 在各种内部代码 26 和气动弹性建模软件中,水平轴风力涡轮机模拟代码第二代 (HAWC2) 27 提供了为数不多的非线性商用模拟器之一,它由丹麦技术大学 (DTU) 开发,将 BEM 理论与多体公式相结合以模拟几何效应。解决风力涡轮机叶片大位移问题的另一种方法是几何精确梁理论 (GEBT),28,29 它本质上提供了变形梁几何的精确表示,这对于大型风力涡轮机来说越来越重要。然而,解决典型的基于位移的 GEBT 公式的缺点之一是计算成本增加。对此问题的一种补救措施是实施混合形式公式,30 已广泛应用于飞机机翼应用。31 该公式最近才实施并得到验证 32,随后进一步与 BEM 理论融合,开发出一种用于 WT 叶片的非线性气动弹性模型。一类替代方法是使用降阶模型,33,34 这可能很好地基于非线性正态模态 (NNM) 的使用。35 一些最近的研究集中于叶片响应的耦合行为,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明可以实现显著的计算效率,从而能够与结构监测数据耦合以供实时应用。39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,然而,与典型的基于位移的 GEBT 公式解决方案相关的缺点之一是计算成本增加。通过实施混合形式公式 30 可以解决这个问题,该公式已广泛应用于飞机机翼应用。31 该公式最近才实施和验证 32,随后进一步与 BEM 理论融合,开发了 WT 叶片的非线性气动弹性模型。一类缓解计算成本增加的替代方法是使用降阶模型 33,34,这可能很好地基于非线性法向模式 (NNM) 的使用。35 一些最近的研究集中在叶片响应的耦合行为上,36-38 后者处理三维叶片模型的几何效应,使用子结构方法考虑这些效应,并通过模态导数增强。该方法被证明具有显著的计算效率,从而能够与结构监测数据耦合以供实时应用。 39 最后,
摘要:采用有限元法对某大跨度输电塔进行模态分析,并采用离散刚度法建立其气动弹性模型进行风洞试验。利用视觉位移测量仪和加速度计分别测量气动弹性模型的位移和加速度,并采用有限元计算计算塔的风致响应,与风洞试验结果进行对比。计算了阵风响应因子,并与规范和其他研究的结果进行了比较。结果表明:视觉位移仪能够很好地记录风洞中模型塔的振动;塔的加速度以一阶共振响应为主,位移以背景响应为主;纵向和横向的位移和加速度相近,表明侧风和顺风向响应大小相同。考虑雷诺数修正后试验得到的塔顶位移与数值模拟结果基本一致,风洞试验得到的塔顶阵风响应因子小于规范计算值,与有限元计算值接近。
航空航天工程涉及控制飞行以及飞机和航天器设计和建造的工程科学。这包括大气和太空中飞行和推进的机制,包括空气动力学、升力和阻力,以及飞机、直升机、无人驾驶飞行器 (UAV) 和火箭等飞行器的设计和控制。航空航天工程课程包括基础工程课程和技术选修课,学生可以根据自己的兴趣和未来预期的职业活动在该领域的特定领域获得一些专业化。有三个选项可供选择:空气动力学和推进;航空航天结构和材料;航空电子和航空航天系统。空气动力学和推进与飞机的“飞行”方面密切相关,包括空气动力学、气体动力学、航空航天飞行器性能、涡轮机械和推进等主题。航空航天结构与材料与飞机和航天器的设计和制造有关,包括飞机应力分析、气动弹性和振动、复合材料和飞机设计等主题。航空电子和航空航天系统具有重要的电气和计算机工程内容,为控制现代飞机所需的航空电子和系统工程提供必要的背景,包括航空电子导航系统、通信网络、航天器任务设计和飞行控制系统等主题。
航空航天工程涉及控制飞行以及飞机和航天器设计和建造的工程科学。这包括大气和太空中飞行和推进的机制,包括空气动力学、升力和阻力,以及飞机、直升机、无人驾驶飞行器 (UAV) 和火箭等飞行器的设计和控制。航空航天工程课程包括基础工程课程和技术选修课,学生可以根据自己的兴趣和未来预期的职业活动在该领域的特定领域获得一些专业化。有三个选项可供选择:空气动力学和推进;航空航天结构和材料;航空电子和航空航天系统。空气动力学和推进与飞机的“飞行”方面密切相关,包括空气动力学、气体动力学、航空航天飞行器性能、涡轮机械和推进等主题。航空航天结构与材料与飞机和航天器的设计和制造有关,包括飞机应力分析、气动弹性和振动、复合材料和飞机设计等主题。航空电子和航空航天系统具有重要的电气和计算机工程内容,为控制现代飞机所需的航空电子和系统工程提供必要的背景,包括航空电子导航系统、通信网络、航天器任务设计和飞行控制系统等主题。