预计 27MW 水平轴风力涡轮机 (HAWT) 平台将成为 2040 年风力涡轮机的标准配置,叶片长度必须达到 145 米左右。这就需要叶片设计坚固,考虑到设计、生产、测试和运行中所有固有的不确定性,以准确预测使用寿命并获得可靠的维护间隔。超长叶片的纤细性需要更符合气动弹性的设计。此外,我们预计设计将以分段叶片为目标,不仅为了方便运输,而且还为了减少叶片本身和安装设备的搬运和安装负荷。未来的叶片将使用一种综合方法进一步优化,该方法将气动弹性和结构行为要求与使用寿命、坚固性和表面退化等考虑因素相结合。这种综合优化将涉及整个叶片设计,包括分段位置和连接技术。还确定了用于结构健康监测的集成传感器的最佳位置。这为自由形式设计优化程序带来了机会,例如用于设计叶片剪切载荷承载结构的拓扑优化。设计中的一些优化只能通过更自动化的制造来实现。提高生产线某些部分的重复质量,每天 24 小时不间断生产将减少出错空间并减少人工劳动。叶片部分
A/C 飞机 A/D 模拟到数字 AA 主动装甲 AAAV 先进两栖突击车 AAN 陆军下一代 AAW 主动气动弹性机翼 ABCA 美国-英国-加拿大-澳大利亚 ABIS 先进战场信息系统 ABL 机载激光器 ABS 基于代理的系统 ac 交流电 ACBL 两栖货物搁浅驳船 ACN 机载通信节点 ACTD 先进概念技术演示 ADC 声学设备对抗 ADCAP 先进能力 ADN 爆炸成分 ADW 代理击落弹头 AFATDS 先进野战炮兵战术数据系统 AFRL 空军研究实验室 AFSATCOM 空军卫星通信司令部 AFSPC 空军太空司令部 Ag 银 AGARD 航空航天研究与发展咨询小组 AGE 航空航天地面设备 AHM 反直升机地雷 AI 人工智能 AIEWS 先进综合电子战系统 AIM 先进 ISR 管理 AIN 陆军互操作网络 AJ 抗干扰 AJP 先进联合规划 Al 铝 ALC 空中后勤中心 ALEP先进激光护目镜 ALMDS 机载激光地雷探测系统 A-LOC 几乎失去意识 ALP 先进物流计划 AMC 陆军机动司令部 AMDS 先进地雷探测器系统
[1] EH Baalbergen、E. Moerlan、WF Lammen、PD Ciampa (2017) 支持未来飞机高效协同设计的方法。NLR-TP-2017-338。[2] AJ de Wit、WF Lammen、HS Timmermans、WJ Vankan、D. Charbonnier、T. van der Laan、PD Ciampa (2019) 飞机供应链的协同设计方法:多层次优化。NLR-TP-2019-202。[3] WF Lammen、P. Kupijai、D. Kickenweitz、T. Laudan (2014) 将发动机制造商的知识整合到初步飞机尺寸确定过程中。NLR-TP-2014-428。 [4] E. Amsterdam、JW Wiegman、M. Nawijn (2021) 铝合金疲劳裂纹扩展速率的幂律行为和转变。国际疲劳杂志,待提交。[5] FP Grooteman (2020) 使用光纤布拉格光栅传感器进行多载荷路径损伤检测。NLR-TP-2020-415。[6] FP Grooteman (2019) 概率故障安全结构风险分析。NLR-TP-2020-416。在 2019 年 ASIP(飞机结构完整性计划)会议上发表。[7] FP Grooteman、E. Lee、S. Jin、MJ Bos (2019) 极限载荷系数降低。在 2019 年飞机结构完整性计划 (ASIP) 会议上发表。 [8] E. Amsterdam,FP Grooteman (2016) 应力状态对疲劳裂纹扩展幂律方程指数的影响。NLR-TP-2016-064。 [9] E. Amsterdam (2021) 金属合金拉伸-拉伸疲劳中裂纹扩展速率的现象学模型。待提交。 [10] WJ Vankan、WM van den Brink、R. Maas (2017) 飞机复合材料机身结构模型的验证与相关性——初步结果。NLR-TP-2016-172。 [11] JW van der Burg、BB Prananta、BI Soemarwoto (2005) 几何复杂飞机配置的气动弹性 CFD 研究。NLR-TP-2005-224。 [12] J. van Muijden、BB Prananta、RPG Veul (2008) 疲劳分析参数化程序中的高效气动弹性模拟。NLR-TP-2008-587。[13] H. Timmermans、BB Prananta (2016) 飞机设计过程中的气动弹性挑战。第六届飞机设计合作研讨会,波兰华沙。[14] L. Paletti、E. Amsterdam (2019) 增材制造对航空航天部件结构完整性方法的影响。NLR-TP-2019-368。[15] L. Paletti、WM van den Brink、R. Bruins、E. van de Ven、M. Bosman (2020) 航空航天中的增材制造设计:拓扑优化和虚拟制造。NLR-TP-2020-285。 [16] JC de Kruijk (2018) 使用机器人技术实现复合材料的自动化制造,降低成本、缩短交货时间和提高废品率 - STO- MP-AVT-267-12。NLR-TP-2018-143。[17] WM van den Brink、R. Bruins、CP Groenendijk、R. Maas、P. Lantermans (2016) 复合材料热塑性水平稳定器扭力箱的纤维转向蒙皮设计。NLR-TP-2016-265。[18] P. Nijhuis (2020) 复合材料格栅加筋板的环保生产方法。在 2020 年阿姆斯特丹 SAMPE 欧洲展会上发表。[19] MH Nagelsmit、C. Kassapoglou、Z.Gürdal (2010) 一种提高损伤容限的新型纤维铺放结构。NLR-TP-2010-626。[20] A. Clarke、RJC Creemers、A. Riccio、C. Williamson (2005) 全复合材料损伤容限翼盒的结构分析与优化。NLR-TP-2005-478。
3.3.6.4 有效载荷热调节 ...................................... 25 太空基 OTV ...................................................... 27 3.4.1 空间站运行和支持约束 ...................................... 27 3.4.1.1 机组人员支持 ........................................ 27 3.4.1.2 功耗 ...................................................... 27 3.4.1.3 质量考虑 ................................................ 27 3.4.1.4 地面通信 ................................................ 27 3.4.1.5 舱外活动/自动维护和保养 ........................ 27 3.4.2 OMV 对 OTV 的支持 ........................................ 27 3.4.2.1 发射 ...................................................... 27 3.4.2.2 回收 ...................................................... 27 3.4.2.3 推进剂补给 ................................................ 28 3.4.2.4 推进剂排空 ................................................ 28 3.4.2.5 OMV 接口 ...................................... 28 3.4.2.6 OMV 在轨服务 ...................................... 28 3.4.3 返回 OTV 轨道包络 ...................................... 28 3.4.3.1 STS 包络 ...................................... 28 3.4.3.2 空间站轨道包络 ...................................... 28 OTV 设计 ...................................................... 31 3.5.1 性能裕度 ................................................ 31 3.5.2 设计裕度 ................................................ 32 3.5.3 可靠性 ................................................ 32 3.5.4 冗余 ................................................ 32 3.5.5 人员评级 ................................................ 32 3.5.6 子系统设计标准 ........................................ 32 3.5.6.1 结构 ................................................ 32 3.5.8.1.1 疲劳......................................... 32 3.5.6.1.2 设计安全系数 ...................................... 33 3.5.6.1.3 验证试验 .............................................. 33 3.5.6.1.4 极限安全系数应用 ........................ 33 3.5.6.1.5 组合载荷 ...... ................................. 34 3.5.6.1.6 极限载荷 ...................................... 34 3.5.6.1.7 允许的机械性能 ........................ 35 3.5.6.1.8 气动弹性 ...................................... 35 3.5.6.1.9 地面处理约束 ...................................... 35 3.5.6.1.10 蒙皮壁板屈曲 ...................................... 35 3.5.6.1.11 应力腐蚀 ...................................... 35 3.5.6.1.12 抗损伤 ...................................... 35 3.5.5.1.13 错位和公差 ...................................... 35 3.5.6.1.14 断裂控制.., ...................................... 36 3.5.6.2 气动制动子系统设计标准 ............................. 36 3.5.6.3 推进 ...................................... 36 3.5.6.3.1 主推进系统 ................................ 36 3.5.6.3.1.1 火箭发动机 ................................ 36 3.5.6.3.1.2 主推进系统推进剂储存和输送系统 ........................ 36
ACP 美国清洁能源 DFMEA 设计故障模式与影响分析 DLC 设计载荷工况 dWAM 分布式风气动弹性建模 ECD 具有方向变化的极端相干阵风 ECG 极端相干阵风 EDC 极端方向变化 EOG 极端运行阵风 EOG 1、EOG 50 具有 1 年和 50 年重现期的 EOG ETM 极端湍流模型 EWM 极端风速模型 EWS 极端风切变 FLS 疲劳极限状态 HAWC2 水平轴风力涡轮机模拟代码 第二代 HAWT 水平轴风力涡轮机 IEC 国际电工委员会 IECRE IEC 可再生能源应用设备标准认证体系 NREL 国家可再生能源实验室 NTM 正常湍流模型 NWP 正常风廓线模型 O&M 运营和维护 OEM 原始设备制造商 PSF 部分安全系数 RRD RRD Engineering, LLC SLS 使用极限状态 ULS 极限状态 VAWT垂直轴风力涡轮机 V&V 验证和确认 WTG 风力发电机 数学符号 A 威布尔尺度参数 𝐹𝐹 𝑘𝑘 通用特征载荷 k 威布尔形状参数 I ETM ETM 湍流强度 PE (𝐹𝐹 𝑘𝑘 ) 超过 𝐹𝐹 𝑘𝑘 的概率 p 0 参考大气压 T ECD ECD 的瞬态持续时间 T EDC EDC 的瞬态持续时间 T EWS 极端风切变 (EWS) 的瞬态持续时间 T 阵风 EOG 的阵风持续时间
商用运输飞机的结构载荷分析:理论与实践 TedL。Lomax,1996 航天器推进 Charles D. Brown,1996 直升机飞行动力学:飞行品质和仿真建模的理论与应用 Gareth Padfield,1996 飞机的飞行品质和正确测试 Darrol Stinton,1996 飞机的飞行性能 S. K. Ojha,1995 测试和评估中的运筹学分析 Donald L. Giadrosich,1995 雷达和激光截面工程 David C.Jenn,1995 动态系统控制简介 Frederick O. Smetana,1994 无尾飞机的理论与实践 Karl Nickel 和 Michael Wohlfahrt,1994 防御分析中的数学方法第二版 J. S. Przemieniecki,1994 高超音速气动热力学 John J. Bertin,1994 高超音速吸气式推进William H. Heiser 和 David T. Pratt,1994 实用进气气动设计 E. L. Goldsmith 和 J. Seddon,编辑,1993 国防系统的采办 J. S. Przemieniecki,编辑,1993 大气再入动力学 Frank J. Regan 和 Satya M. Anandakrishnan,1993 柔性结构动力学与控制简介 John L. Junkins 和 Youdan Kirn,1993 航天器任务设计 Charles D. Brown,1992 旋翼结构动力学与气动弹性 Richard L. Bielawa,1992 飞机设计:概念方法第二版 Daniel P. Raymer,1992 观测与控制过程优化 Veniamin V. Malyshev、Mihkail N. Krasilshikov 和 Valeri I. Karlov,1992 壳体结构的非线性分析 Anthony N. Palazotto 和 Scott T Dennis,1992 轨道力学 Vladimir A. Chobotov,1991 国防关键技术 空军技术学院,1991 国防分析软件 J. S. Przemieniecki,1991 超音速导弹进气口 John J. Mahoney,1991