红外辐射的波长比可见光长(从标称红色可见线波长 700 纳米开始直到 1 毫米)。第一种用于测量红外辐射的防御设备是在第一次世界大战之前开发出来的。在第二次世界大战期间,红外探测也用于跟踪(Hudson,1969)。第一批寻找红外,即红外(热)辐射的导弹是在 20 世纪 50 年代初开发出来的,而由于雷达系统的成功,它的广泛应用大约在 10 - 15 年后开始。Titterton(2006)通过统计发现,自 20 世纪 60 年代以来的 40 年间,热寻的导弹造成了超过 80 % 的战斗损失。在海湾战争 (1991) 期间,76% 的失事飞机是 IR(红外)导弹造成的,而在科索沃战争期间,北约飞机不得飞到 15,000 英尺以下,因为导弹的有效性(Santos 等人,2007 年)。与此同时,自 1987 年以来,26 年来,共有 35 架民用飞机遭到肩扛式导弹袭击,造成 500 多人死亡(Bolkcom 等人,2004 年)。(事实上,这个数字可能要小一些,因为一些失事的民用飞机用于军事目的,还有一些,或者更确切地说,大多数飞机是在冲突地区遭到袭击的,在那里它们可能被视为用于军事目的(Sweetman,2003 年))。无论如何,2003 年,国土安全部发起了可能是第一个
Wing Ng 是 APPL 的联合主任。他是弗吉尼亚理工大学机械工程系的杰出校友教授和 Chris C. Kraft 教授。他的主要研究兴趣是无人机和无人驾驶飞行器的气动声学、喷气噪声的气动声学、涡轮发动机流量测量和飞行测试的先进诊断技术的开发、跨音速涡轮叶片空气动力学和传热研究、燃气轮机扩散器/收集器性能评估以及燃气轮机部件的气动热粒子研究。
Wing Ng 是 APPL 的联合主任。他是弗吉尼亚理工大学机械工程系的杰出校友教授和 Chris C. Kraft 教授。他的主要研究兴趣是无人机和无人驾驶飞行器的气动声学、喷气噪声的气动声学、涡轮发动机流量测量和飞行测试的先进诊断技术的开发、跨音速涡轮叶片空气动力学和传热研究、燃气轮机扩散器/收集器性能评估以及燃气轮机部件的气动热粒子研究。
- 在抵达行星之前,太空运输过程中的任何时间都可以部署进入 • ADEPT 开发专注于进入金星作为延伸目标。由于进入条件更温和(例如金属肋条、碳纤维织物层数更少),火星 EDL 的使用风险较低 • ADEPT 的碳纤维织物气动热能力允许更陡峭的火星进入轮廓(更高的加热),从而减少着陆分散足迹 • 低弹道系数设计可以消除高风险的 EDL 事件(例如超音速降落伞)
记录显示,请愿人拟从事机械和航空航天工程师的职业,专攻特殊应用的物理学基础研究,开发数值工具和方法以解决一般和特殊挑战,进行根本原因分析以识别和解决气动热问题和相互作用,并设计和分析设备和部件,包括实验前后的结果。他表示,他的工作将提供更多信息,并加深对多学科相互作用以及基于各种方法和技术的研究应用领域的理解。请愿人解释了他的研究将如何考察各种技术的重叠,并指出了飞机机翼和空气动力学之间的关系以及飞机空气动力学如何导致生产出具有空气动力学燃油效率的汽车。
OUSD (R&E) 关键技术领域:通用作战要求 (GWR) 目标:开发一种创新工具,该工具可以从计算机辅助设计 (CAD) 几何图形中自主生成通用网格,并具有自适应全局和局部细化功能,用于耦合气动热结构分析和优化,从而实现基于虚拟现实 (VR) 的实时交互式设计。描述:多学科设计、分析和优化 (MDAO) 可以加速飞机开发的数字工程。高超音速飞机 MDAO 的核心组成部分是涉及高速空气动力学、结构动力学和热力学之间相互作用的多物理模拟。航空结构热模拟可以大幅减少地面和飞行中的测试,因为功能更强大的高性能计算 (HPC) 硬件可以提供更高的几何和物理复杂性分辨率 — — 例如,如果 1980 年代飞机的 10 厘米精度是标准,那么 1 毫米的几何精度和 1 微米的边界层分辨率现在已很常见。然而,这些不断增加的几何精度要求和物理复杂性对网格生成提出了巨大挑战 [参考文献 1–2]。根据 NASA CFD Vision 2030 [参考文献 3],网格生成和自适应性仍然是计算流体动力学 (CFD) 工作流程中的重要瓶颈。一方面,自主和几何感知的网格生成技术仍然缺乏。生成
增韧单片纤维增强抗氧化复合材料 (TUFROC) 代表了低成本、可重复使用的航天器热防护系统 (TPS) 的最新技术,具有耐高温能力,并已在美国空军 X-37B 上进行了飞行验证。这种两片式设计利用低电导率多孔二氧化硅基材与耐高温碳帽和表面处理相结合。NASA 更新了表面处理的化学成分,从而提高了高加热能力和可重复使用性。与原始配方(现称为标准 TUFROC)相比,这种称为高级 TUFROC 的新系统在相同的气动热加热条件下表面温度较低(低约 80 K)。加热降低的原因是新配方的催化效率较低,从而降低了表面放热原子复合率。多次电弧喷射测试活动表明,Advanced TUFROC 能够承受 1866 K 的长时间反复暴露或 1980 K 的较短时间暴露,而不会衰退或损坏 TPS。此外,还开发并测试了一种用于评估机翼前缘三维流动的改进型电弧喷射制品设计。与以前的工作相比,该制品允许在飞行相关条件下评估瓦片间隙处的加热情况,同时显著降低制品制造和电弧喷射设施配置成本。