TimothéRobineau,Auline Rodler,Benjamin Morille,David Ramier,JérémieSage等。与水文和小气候模型耦合,以模拟从城市绿色区域和空气温度的蒸散量。城市气候,2022,44,pp.101179。10.1016/j.uclim.2022.101179。hal-04524035
城市热岛(UHIS)已经研究了100多年(Stewart,2019年)。根据背景农村温度和峰值城市温度之间的变化,它们定义为39(Oke,40 1973)。开创性的工作从十九世纪初到二十世纪初期,强调了城市对温度的41影响(霍华德,1833年;雷诺,1868年)。1920年至1940年42年的创新方法有助于量化和映射这种效果(Schmidt,1927)和实验研究43从1950年到1980年,对此有了更好的了解(Sundborg,1951年)。本研究源于44个通过移动45运动来衡量城市温度的创新方法所做的工作。它评估了城市环境46中土地表面特性对温度的影响以及由表面特性近似引起的相关不确定性。47
先前的研究已经指出气候变化与新发现的 2 型糖尿病 (T2D)、高血压 (HTN) 和肥胖症之间存在关联。然而,关于该主题的研究仍然很少,需要在其他地理位置进行进一步研究,特别是在菲律宾等热带国家。因此,在这项研究中,我们确定了温度、湿度和降雨量与菲律宾中吕宋岛新发 T2D、HTN 和肥胖症发病率之间的关联。这三种疾病的二手数据来自菲律宾卫生部的年度现场卫生服务信息系统。同时,气候数据来自菲律宾大气、地球物理和天文服务管理局的气候和农业气象数据科。然后将所有数据合并到结构化的 Microsoft Excel 电子表格中并进行统计分析。还使用 QGIS 绘制了该省疾病分布的热图。使用 Spearman 相关性,我们表明新发 T2D 与测试的所有三个气候变量显着相关,并且与平均温度具有很强的相关性。另一方面,新发高血压与平均气温和降雨量有显著相关性。未发现肥胖与此有任何关联,热图中也没有发现明显的疾病分布模式。据我们所知,这是菲律宾第一项探讨生活方式疾病与气候变量之间关系的研究。我们的研究结果表明,气候因素会影响疾病的发生,尤其是高血压和 2 型糖尿病。然而,需要进一步的纵向研究来验证这些说法。
环境参数(例如空气温度)是人类生活质量和能源效率管理的关键终端。城市地区人口稠密,并且通过城市形态和景观空间模式与其中一些自然现象高度相关。因此,预测城市计划对环境参数的影响对于适当的决定和计划以增强城市的生活条件至关重要。先前的研究强调了乌拉巴形态与空气温度之间的密切相关性,强调了在这些分析中采用三维数据的重要性。在这项研究中,我们首先引入了一种将CityGML数据转换为VoxEls的方法,该方法在大规模数据集(例如城市)的高分辨率上可以有效,快速地工作,但通过牺牲了一些建筑细节,从而限制了先前的Voxelization方法的局限性,这些方法限制了对大型量表的较高量表的较高范围,以较高的量化和无效的范围,以使其对Voxel的高度分配为高分。来自多个城市的那些体素化的3D城市数据和相应的空气温度数据用于开发机器学习模型。在模型训练之前,在输入数据上实施了高斯模糊以考虑空间关系,因此,在高斯模糊之后,空气温度和体积建筑物形态之间的相关率也会增加。这个受过训练的模型能够通过使用相应像素的构建体积信息作为输入来预测空气温度的空间分布。在模型训练之后,预测结果不仅是用均方根误差(MSE)评估的,而且一些图像相似性指标,例如结构相似性指数量度(SSIM)和学习的知觉图像贴片相似性(LPIPS)能够在评估过程中检测和考虑空间关系。这样做,该研究旨在帮助城市规划人员将环境参数纳入其计划策略,从而促进更可持续和居民的城市环境。
加拿大西部谷物最新动态——2024-25 作物年度第 18 周摘要:大草原地区持续的寒冷天气和低于平均水平的气温严重影响了第 18 周谷物运输的网络流动性和速度。这要求加拿大国家铁路公司保持冬季列车长度限制,以维持网络中谷物和其他商品的安全运输。持续的运力限制导致大量列车因网络运力下降而被阻止。第 18 周谷物运输共运输了 646,000 公吨谷物和加工谷物产品。加拿大国家铁路公司最大可持续端到端供应链容量指导加拿大谷物供应链的容量在整个作物年度内都在变化,多种因素对在任何时间点可以通过系统的谷物量造成了实际限制。谷物供应链的最大可持续容量还取决于该供应链从原产地到目的地各个部分的容量和运营效率。 CN 认为,如果持续发展,端到端粮食供应链在冬季每周最多可容纳 6,250 辆车(每周最多 595,000 公吨)散装粮食和加工粮食产品,其中预计每周约有 900 辆车将用于运输加工粮食产品。CN 的这些最大端到端粮食供应链容量水平假设必须具备多种条件才能实现这些水平。这些条件包括但不限于下表中列出的条件:
是单位质量(dirac delta函数)的(瞬时)脉冲。它也以无量纲形式表示,𝑔𝜂 =𝑔ℎ0𝑊0。有趣的属性(命题1)是IRF与停留时间的概率密度函数相同,因为输入是脉冲函数。储层,线性:流出与存储成正比的储层。任何其他类型的存储 - 输出关系关系定义了非线性储备。储层,sublrinear:一个储层,其中流出与升高到功率的存储成正比𝑏<1。储层,超级线性:一个水库,其中流出与升高到功率𝑏> 1的存储成正比。停留时间(𝑾):粒子(分子)从进入其出口到其出口的时间持续时间。
对温度波动对全球国内生产总值 (GDP) 影响的计量经济学分析表明,较高的温度对温暖国家有害,对较冷国家有益,并且存在全球“最佳”温度 1 – 3 。然而,总体温度-GDP 关系是跨空间和经济部门的平均值,掩盖了异质性,歪曲了温度变化的成本或收益,并为缓解和适应政策提供了误导性指导。我们以欧洲为重点,使用行政区级的增加值 (GVA) 和 GDP 增长率数据来估计温度对国家、地区和行业层面经济增长的影响。与之前的全球研究不同,在欧洲,我们发现,在相对寒冷地区(年平均气温 0 至 14°C),高于平均水平的年份对 GVA 和 GDP 产生负面影响,而在较温暖地区(高于平均水平 14°C)高于平均水平的年份产生正面影响,而在极端地区(< 0°C 和 > 20°C),情况则相反。在整个欧洲,这种 U 型温度-GDP 增长关系意味着经济增长将发生 -0.14(95% CI:± 0.16)个百分点的变化,而不是 1 中的 +0.16(± 0.14)的收益。使用 RCP4.5(中位数 CMIP6),到 2100 年,年平均增长率将变化 -0.07(± 0.18)至 -1.23(± 0.38)个百分点,具体取决于实证规范。按部门和地区分类,边际温度效应高度不均匀,即使在国家内部也是如此。结果颠覆了正温度冲击有利于较冷地区的说法,指出了由专业化引起的区域脆弱性,并表明局部温度最适值,而不是全球温度最适值。JEL 分类:D31、D61、H43。关键词:经济增长、温度冲击、气候变化、空间异质性、欧洲。
对大气温度的精确预测对于各种应用,例如农业,能源,公共卫生和运输至关重要。现代技术的进步导致了传感器和其他工具的开发,以收集高频空气温度数据。但是,由于其特定特征,包括高维度,非线性,季节性依赖性等,准确的预测是具有挑战性的。为了应对这些预测挑战,本研究提出了一个基于组件估计技术的功能建模框架,通过将空气温度时间序列划分为确定性和随机组件。使用广义添加剂建模技术对每日和每年的季节性组成的确定性组成部分进行了建模和预测。同样,解释该过程短期动力学的随机组件是由功能自回旋模型,自动回归积分移动平均平均值和向量自回归模型对过程进行建模和预测的。为了评估模型的性能,从伊斯兰堡,巴基斯坦收集了每小时的空气温度数据,并获得了一日样本的预测。使用根平方误差,平均绝对误差和平均绝对百分比误差比较所有模型的预测结果。结果表明,与Arima和VAR模型相比,所提出的远距离模型的性能相对较好,从而导致样本外预测误差。这项研究的发现可以促进跨部门的明智决策,优化资源分配,增强公共安全并促进社会经济的韧性。
气候变化造成的全球经济损失估算主要评估年度气温变化的影响。然而,降水、气温变率和极端事件的作用尚不清楚。本文结合气候模型预测与经验剂量反应函数,将气温均值和变率、降雨模式和极端降水的变化转化为经济损失。结果表明,全球平均气温升温+3°C时,损失将达到国内生产总值的10%,其中较贫穷的低纬度国家受影响最严重(高达17%)。相对于年度气温损失,预测变率和极端事件的额外影响较小,且主要受年际变率的影响,尤其是在低纬度地区。然而,在估算气温剂量反应函数时考虑变率和极端事件,会使全球经济损失增加近两个百分点,并加剧经济尾部风险。这些结果呼吁开展针对特定区域的风险评估,并整合其他气候变量,以更好地理解气候变化的影响。
使用DNDC(denitrifi阳离子分解)模型(版本9.5)来预测多年生草的蒸腾和光合作用速率(红三叶草和提摩太教)的差异,以及一种砂质苏普固醇的自亲呼吸。在模型实验中使用了两个生长季节的输入参数(从2010年5月1日至2015年8月31日至2015年8月31日)。在2010年,该周期的平均空气温度为14.1±3.3°C,总降水量为0.1796 m,而在2015年,平均空气温度为16.8±5.5°C,总降水量为0.538 m。这些气象参数对2010年的植物不利,2015年有利。结果表明,DNDC模型充分预测了多年生草的总和平均蒸腾率的天气引起的差异:0.12204 m。和0.00099±0.00040 M.Day -1分别在2015年有利的气象条件下和0.05969 m。和0.00049±0.00035 m.day -1,在2010年不利的气象条件下。植物的每日蒸腾率的动力学显着(r = 0.34 p <0.001)与土壤水含量仅在不利的气象条件下相关。模拟光合作用速率的平均值等于2015年的84.4±27.9 kg.c.c.hha -1。天-1,2010年52.3±23.4 kg.c.hha -1 .day -1 .day -1 -1在2010年。在两种天气情况之间的光合作用速率的平均值中存在显着的差异(p <0.001)。单向方差分析(ANOVA)的结果表明,在有利的(8.14±2.25 kg.c.h -1 .day -1)下,自养呼吸的速率比不利(8.14±2.25 kg.c.ha -1 .day -1)高于不利(5.17±2.17±2.19±2.19±2.19 kg.c.c.ha -1 .day -1 .day -1 .day -1)。