我们研究的总体目标是在魁北克环境中记录这些关联。为此,我们开发了统计模型来 (a) 评估夏季室外温度与魁北克工人赔偿委员会 (CSST,现名为 CNESST) [魁北克工人赔偿委员会] 接受的与过度暴露于高温(中暑、昏厥、失去意识等)和工作相关事故有关的职业伤害赔偿之间的关联;(b) 探索夏季对流层臭氧日水平与接受赔偿的急性呼吸道疾病职业伤害索赔之间的关联。最后,我们还想确定最有可能因高温或对流层臭氧浓度而遭受职业伤害的亚群、行业和职业。
天花板下方的最高气温是隧道安全的重要参数。本研究分析了由自然通风隧道中双火源驱动的最大过量天花板气温的特征。进行了一系列的小型隧道火力实验,并具有不同的火灾分离距离和热量释放速率。还进行了基于同等虚拟起源的理论分析。结果表明,当两个火羽流到天花板之前合并时,仅存在一个峰值气温,而当两个火羽完全分离时,可以观察到两个峰值气温。隧道天花板以下的最高过量气温随着羽流合并区域的火灾分离距离的增加(S 当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。 此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。 本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。当火力分离距离进一步增加(S> S CP)时,火灾分离距离对天花板下方的最高气温的影响非常有限。此外,考虑到不同的羽流合并状态,建议使用同等火源的模型预测天花板以下的最大过量气温。本研究有助于理解由双火驱动的烟气最大气温特性,而自然通风隧道中的热量相等。
寒冷到非常寒冷,风力强劲,气温下降1-2°C。最低气温7-14°C。最高气温24-27°C。山顶寒冷到非常寒冷:最低气温4-10°C。东北风15-35公里/小时。中部凉爽,风力强劲,气温下降1-2°C。最低气温15-18°C。最高气温26-29°C。东北风10-30公里/小时。东部早晨凉爽,风力强劲,气温下降1-2°C。最低气温16-20°C。最高气温27-30°C。东北风20-35公里/小时。离岸浪高约2米及以上。南部、东海岸上部:早晨凉爽,风力强劲,气温略有下降。下部:Yala和Narathiwat局部雷阵雨最低气温18-25℃。最高气温27-32℃。素叻他尼府上行:东北风20-40公里/小时。雷阵雨时浪高2-3米,3米以上。洛坤府下行:东北风20-45公里/小时。雷阵雨时浪高2-4米,4米以上。南部、西海岸局部雷阵雨,主要在董里和沙敦。最低气温22-25℃。最高气温29-34℃。东北风20-40公里/小时。浪高1-2米,离岸约2-3米高,雷阵雨时浪高3米以上。曼谷及附近地区早晨凉爽,风力强,气温下降1-2℃。最低气温16-19℃。最高气温27-28℃。东北风10-30 公里/小时。
综合分析用于研究驱动与北大西洋涛动 (NAO) 相关的地表气温异常模式增长和衰减的物理过程。利用欧洲中期天气预报中心在其再分析模型中实施的热力学能量方程,我们表明异常风对气候温度场的平流驱动了两个 NAO 阶段的地表气温异常模式。非绝热过程与这种温度平流强烈相反,最终导致地表气温异常恢复到其气候值。具体而言,在格陵兰岛、欧洲和美国,长波加热/冷却与水平温度平流相反,而在北非,垂直混合与水平温度平流相反。尽管表皮温度和地表气温异常模式之间存在明显的空间对应关系,但发现驱动与 NAO 相关的这两个温度异常的物理过程是不同的。表层温度异常模式由向下的长波辐射驱动,而如上所述,地表空气温度异常模式由水平温度平流驱动。这意味着,尽管地表能量预算是了解表层温度变化的有用诊断工具,但不应将其用于了解地表空气温度变化。
众所周知,气温升高会对经济增长产生负面影响,尤其是在贫穷国家。政府间气候变化专门委员会 (IPCC) 在其上一份报告中强调了气候变化的另一个重要方面:气候条件的波动随着时间的推移而变得更大,气温和降水的空前波动影响着越来越多的地理区域(Arias 等人,2021 年)。本文表明,从经济角度来看,这种现象与气温水平的根本变化同样重要。我们使用 1960 年代以来 133 个国家的气候数据来估计具有随机波动性的面板 VAR。该模型捕捉了气温与经济活动之间的内生相互作用,并适应了可能影响基础序列水平和变异性的冲击。这一框架使我们能够估算无法使用历史数据预测的年气温残余变化的波动性,量化特定国家/地区在特定时点面临的事前“气温风险”。结合适当的识别限制,它还使我们能够隔离气温波动的外生变化,并追踪其对各种经济活动指标的影响。我们的分析得出两个主要结果。第一个结果是,气温波动性随着时间的推移稳步增加,即使在仅受全球变暖影响较小的地区也是如此。第二个结果是,气温波动对经济活动很重要。控制气温水平,波动性每增加1 ℃,GDP增长平均会下降0.3%,GDP增长率波动性增加0.7%。换句话说,气温波动会同时导致收入增长降低和变化无常。波动性冲击也会影响富裕的非农业国家,而且这些国家并不受 GDP、气温或降水量大幅波动的影响。我们发现,波动性既影响消费也影响投资,而且其对制造业和服务业的影响更大。我们的研究结果表明,风险在气候与经济之间的关系中发挥着重要作用。经济主体会对预期环境变异的变化作出反应,与其他宏观金融环境一样,可预测性降低本身不利于增长。这表明,气候风险对福利具有重要的事前影响,气候系统未来路径的不确定性可能会提前影响经济,并且
2024 年:全球和印度最热的一年。全球气温:比工业化前水平高 1.5°C 以上。• 印度气温:比 1991-2020 年平均值高 0.65°C。• 比较挑战:基线:使用不同的基线;IMD 数据来自 1901 年,而不是 1850-1900 年。• 陆地与全球气温:印度的气温上升仅限于陆地,而全球气温上升包括陆地和海洋。• 变暖的特点:陆地与海洋:陆地比海洋变暖更快。• 印度变暖:比 1901-1910 年平均值高 1.2°C。• 区域差异:热带位置:与高海拔地区相比,印度的变暖不太明显。影响印度变暖的因素• 气溶胶:灰尘和空气污染产生的冷却效应。非均匀陆地:喜马拉雅山和沿海地区等地区的变暖程度不同。
贾姆谢德布尔,1 月 3 日:该邦目前正遭遇强烈寒潮,全邦气温低于 10 摄氏度。严寒天气的成因是,最近查谟和克什米尔以及其他北部地区降雪,导致从该国北部吹来的清爽寒冷的西北风占主导地位。兰契气象中心的气象学家预测,未来两三天天气状况不会发生重大变化。“我们预计未来两三天不会出现任何可能影响贾坎德邦天气的恶劣天气条件。大多数地区将迎来晴朗天气,气温低于 10 摄氏度,”气象中心的一名值班官员说。印度气象局 (IMD) 的数据显示,全邦气温普遍下降:兰契:首府记录到的最低气温为 8 摄氏度,气温明显下降。贾姆谢德布尔:该市以工业活力而闻名,记录了最低
SSHP 系统最常用于在室外气温极低的地区提供电加热,这些地区的室外气温低到足以使仅使用空气对水热泵加热变得困难或成本高昂。SSHP 系统可以有效且高效地加热和冷却建筑物,而无需考虑室外气温。实现此目的的替代方法,例如电加热或化石燃料锅炉或奇特的 AWHP 设计,由于电力需求更高、公用事业成本更高或碳足迹更高而处于劣势。基于电阻的加热的电能转换效率为 1 (1),而 SSHP 系统冷却器-加热器的 COP 可高达 3 (3) 到 4 (4),从而大大降低电力需求。
❖ 查谟、克什米尔和拉达克大部分地区最低气温低于0°C;印度西北部、中部和东部地区气温为10-15°C;印度中部、西部和东部大部分地区气温为12-18°C。今天,最低气温出现在该国平原的丘鲁(西拉贾斯坦邦),为5.4°C。 ❖ 过去24小时内,印度西北部与印度中部相邻的大部分地区的最低气温上升了2-4⁰C。 ❖ 北部内陆卡纳塔克邦大部分地方的最低气温明显高于正常水平(5.1°C或更高);中央邦、古吉拉特邦、东拉贾斯坦邦、马哈拉施特拉邦、马拉特瓦达、维达巴和特伦甘纳邦的许多地方;奥迪沙邦的少数地方;哈里亚纳邦-昌迪加尔-德里、北方邦和恰蒂斯加尔邦的个别地方;旁遮普邦、贾坎德邦、沿海卡纳塔克邦和拉亚拉西马大部分地区气温明显高于正常水平(3.1°C 至 5.0°C);泰米尔纳德邦、本地治里和卡来卡尔邦少数地区气温高于正常水平;西拉贾斯坦邦、比哈尔邦、西孟加拉恒河地区和沿海安得拉邦及亚南邦局部地区气温高于正常水平(1.6°C 至 3.0°C);查谟-克什米尔-拉达克-吉尔吉特-巴尔蒂斯坦-穆扎法拉巴德局部地区气温低于正常水平(-1.6°C 至 -3.0°C),其余地区接近正常水平。气温预报:❖ 未来 48 小时内最低气温没有明显变化,今年 48 小时内印度西北部、西部、中部和东部地区最低气温可能下降 2-4°C
