骨髓炎(BCO)la行的细菌软骨症是肉鸡中的一种腿部障碍,导致经济损失,食品安全问题和动物福利行业的巨大损失。维生素D 3,1,25-二羟基维生素D 3的活性代谢产物在矿物质稳态,骨骼健康和免疫系统中扮演着关键作用,这对于针对BCO的影响至关重要。因此,我们假设补充1,25-二羟基维生素D 3(1,25(OH)2 D 3-糖苷)的补充是控制la行的有效度量。在这里,我们报告了通过比较0 m g/kg,0.5 m g/kg,1.0 m g/kg,1.0 m g/kg和2.0 m g/kg的最佳浓度1,25(OH)2 3-糖苷补充减少BCO的最佳浓度。1.0 m g/kg的1,25(OH)2 D 3-糖苷的应用降低了53.7%,从0 m g/kg和0.5 m g/kg相互差异(p <0.05),但相似(p> 0.05)至2.0 m g/kg。第二个目的是通过比较整个56 d,第一个28 d的1.0 m g/kg(OH)2 d 3-糖苷的应用,评估1,25(OH)2 3-糖苷的喂养的时间。以1.0 m g/kg为1,25(OH)2 D 3-糖苷的饲养剂,以减轻BCO的发病率53%,与过去28 d的申请有显着差异(p <0.05),但没有明显的差异(p> 0.05)与补充56 d的补充差异(p> 0.05)。因此,第一个28 d中的1.0 m g/kg 1,25(OH)2 D 3-糖苷是最佳的1,25(OH)2 D 3-糖苷给药,并为补充
1 Strasbourg大学,CNRS,实验室图像Ville et Environnement(Live),UMR7362,Strasbourg,法国2号法国环境和能源管理机构,法国3章鱼3号章鱼实验室,法国La Madeleine,法国4实验室4个气候和环境科学实验室
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预先印刷此版本的版权持有人于2020年9月14日发布。 https://doi.org/10.1101/2020.09.13.13.20193722 doi:medrxiv preprint
摘要:利用过去来改善未来的预测,需要对气候和温室气体(GHG)(GHGS)对观察到的气候变化的个人气候贡献进行理解和定量,这受到气候溶液强迫和反应的大量不确定性的阻碍。为了估算历史气溶胶响应,我们通过结合观察到的热带潮湿和干燥区域观察到的变化的信号,半明确温度不对称的温度不对称,全球平均温度(GMT)以及全球平均降水(GMLP)(GMLP)的信号来归因于温度和降水的关节变化。指纹代表气候反应对气溶胶(AERS)和其余的外部强迫(NOAER;主要是GHG)源自来自历史单和所有模型的大型组合,该模型来自耦合模型对间隔项目的第6阶段的三个模型,并使用完美的模型研究选择。是由不完善的模型研究和水文灵敏度分析支持的,该分析支持了我们选择温度和降水细纹的选择。我们发现,包括温度和降水在内的诊断效果稍微更好地限制了纯粹基于温度或仅基于GMT的诊断,并允许AER冷却的归因(即使在纤维上不包含GMT时)。这些结果在来自不同气候模型的纤维上具有鲁棒性。AER和NOAER的估计贡献与其他已发表的估计值一致,包括最新IPCC报告的估计。最后,我们将气溶胶诱导的冷却的0.46 K([2 0.86,2 0.05] k)的最佳估计归因于2010年Noaer升温的1.63 K([1.26,2.00] k),相对于1850年至1900年,使用GMT和GMLP的综合信号。
本期本期正在征求论文,展示了与气溶胶辐射强迫和空气质量影响的科学和政策有关的最新结果。总体目标是突出气溶胶研究与政策决策的交集的最新进展。潜在的主题包括但不限于气溶胶和气雾剂前体排放的趋势,使用原位和遥控传感器对气溶胶浓度的趋势进行长期监测,对气雾剂排放的辐射强迫和空气质量影响的过程研究以及气溶胶直接辐射效应和气溶胶互动的建模。测量结果与建模结果之间的联系以及他们如何了解政策决策特别适合本期特刊。政策决策的范围可能从改善空气质量或太阳辐射管理通过海洋云增光效果的可行性范围。气溶胶撞击的量表范围从局部到区域或全球。
到西班牙巴塞罗那的催化研究所; B对巴塞罗那,基金会或大学研究所的研究的支持单位,以卫生乔治·戈尔和古琳娜(Idiapjgol)的主要关注。 C学校。西班牙巴塞罗那市巴塞罗那大学医学院临床基础和系;斯洛文尼亚的Maribor Fality Medical;保加利亚;以及医学院汉诺威医学院,伦德大学,马尔姆伦敦大学欧元或瑞典到西班牙巴塞罗那的催化研究所; B对巴塞罗那,基金会或大学研究所的研究的支持单位,以卫生乔治·戈尔和古琳娜(Idiapjgol)的主要关注。 C学校。西班牙巴塞罗那市巴塞罗那大学医学院临床基础和系;斯洛文尼亚的Maribor Fality Medical;保加利亚;以及医学院汉诺威医学院,伦德大学,马尔姆伦敦大学欧元或瑞典
摘要。气溶胶在大气中的辐射转移中起关键作用,它们对气候变化产生了重大影响。在本文中,我们提出并实施了使用其Mi-Crophysical特性开发气溶胶模型的框架。诸如尺寸分布,复杂折射率和球形百分比之类的微物理特性源自全球气溶胶机器人网络(Aeronet)。但是,当执行藻类测量程序(即,早晨,早晨和晴天晚些时候的晚期)时,通常会检索这些测量值,并且可能不会对卫星覆盖时间进行临时影响,因此无法携带卫星产品的有效阀门。To address this problem of temporal inconsistency of satel- lite and ground-based measurements, we developed an ap- proach to retrieve these microphysical properties (and the corresponding aerosol model) using the optical thickness at 440 nm, τ 440 , and the Ångström coefficient between 440 and 870 nm, α 440–870 .在过去28年内,开发了851个Aeronet部位的气溶胶模型。获得的恢复表明,在经验上可以以高达23%的不确定性检索微物理的特性。一个例外是折射率NI的虚构部分,为此,衍生的不确定性达到了38%。当需要检索微物理特性以及验证卫星衍生的产品时,这些气溶胶的特定参数模型可用于研究。
1 伯明翰大学地理、地球与环境科学学院,伯明翰 Edgbaston Rd,伯明翰,B15 2TT,英国 2 芬兰气象研究所,00101 赫尔辛基,芬兰 3 赫尔辛基大学大气与地球系统研究所,00014 赫尔辛基,芬兰 4 英国南极调查局,NERC,High Cross,Madingley Rd,剑桥,CB3 0ET,英国 5 极地科学研究所 (IPS),国家研究委员会 (CNR),意大利威尼斯 6 韩国极地研究所,26, SongdoMirae-ro,延寿区,仁川,406-840,韩国 7 阿尔弗雷德·韦格纳研究所 (AWI),亥姆霍兹极地与海洋研究中心,不来梅港,德国 8 国家气象局 (SMN),Av. Dorrego 4019,布宜诺斯艾利斯,阿根廷 9 国家科学技术研究委员会 (CONICET),布宜诺斯艾利斯,阿根廷 10 中船重工海洋科学研究所,CSIC,08003,巴塞罗那,西班牙 11 阿卜杜勒阿齐兹国王大学环境科学系,气象、环境和干旱土地农业学院,吉达 21589,沙特阿拉伯半岛
背景:大气气溶胶,也称为短寿命的气候强迫剂,是大气中的重要组成部分,在全球和区域气候变化,空气质量恶化,可见性障碍和人类健康中发挥了重要作用。大气中气溶胶的存在可以改变太阳辐射的吸收和散射,从而影响温度模式,天气和气候系统。追踪气雾光学,物理和化学特性的趋势使科学家能够随着时间的流逝确定气溶胶组成和来源的变化。此知识对于理解空气质量的演变和制定有针对性的污染控制措施至关重要。空气质量建模对于模拟和预测污染物水平至关重要,有助于制定有效的空气质量管理策略。最后,包括先进的仪器和测量方法在内的气溶胶科学中的新兴技术正在彻底改变我们在分子水平上表征气溶胶的能力。这些剪裁技术为气溶胶特性,来源和转换提供了无与伦比的见解,促进了该领域的进步,并为应对空气污染挑战提供了新的途径。