在许多技术和生物医学应用中,都非常希望能够创建具有在线可定制和局部可控磁性能的磁响应软材料 (MSM)。本文首次使用计算机控制的双材料气溶胶喷射打印 (DMAJP) 技术展示了这一能力。这种方法可以在打印过程中控制磁性纳米粒子 (MNPs) 墨水和光固化聚合物气溶胶之间的成分变化。两种气溶胶的混合比决定了纳米复合材料中的 MNPs 负载,可用于局部控制打印结构的磁性。打印过程采用逐层结构化,结合牺牲层方法,用于构建完全独立的 MSM 结构,该结构将磁活性和非磁活性元素结合在单一工艺多材料打印方法中,无需进一步组装要求。利用该方法,可以直接制造具有复杂形状和可编程功能的小规模多材料软物体,其运动可以通过施加外部磁场来控制。
很多重点是研究其运作,降级和最终(最终)的原则。投资新的路线以提高电池的容量和寿命,需要在其操作的各个阶段仔细表征组成型材料,或者更好地观察他们在设备运行时获取信息的能力。在这些方法中,Operando Liquid-Cell透射电子显微镜(也称为原位液体传输电子显微镜(TEM))在文献中受到了很大的关注。[1-7]对于这种技术,微制造用于创建两个硅芯片,每芯片都涂有一层薄层的氮化硅(SIN X)。然后将硅在本地蚀刻以形成悬浮的电子透明罪x窗口。其中一种芯片通常用图案化的光片涂层,该光片可以用作定义细胞厚度的间隔器。可以在两个Si芯片之间密封一层液体(这称为液体电池)。可以在液体环境中与液体环境中的电子成像,在TEM列中,可以用电子成像,从而规避高真空吸尘器的严格要求。当将这种方法用作研究电化学系统的操作技术时,用2或3个电触点对芯片进行了图案,并且其中至少有一个(称为工作电极)位于Sin X窗口区域上。这种方法进一步称为电化学TEM(EC-TEM),已用于研究燃料电池和电池系统。[1,3,8,9] EC-TEM面临的最大挑战之一是对电极的可靠制备,必须足够薄才能通过液体电池进行电子传输,并且必须仔细地将其定位在con-tact上(需要在10 µm的订单下定位精度)。此外,在机械应变下稀薄的Sin X窗户可以很容易地破裂,并且液体细胞可能会遭受不完美的密封,从而使显微镜真空降解。因此,迄今为止的许多EC-TEM研究都集中在实验期间在工作电极上电沉积的感兴趣材料(例如Li Metal)的系统。[1,3,10]以这种方式,感兴趣的材料仅限于电极,并且在实验之前不需要大量的样品准备。因此,关于工业相关材料的EC-TEM文献通常是不相容的,因为它们通常是不兼容的
颗粒,从而照射宿主有机体[2]。天然放射性核素在灰尘中的主张取决于其在原始土壤中的数量。此外,灰尘的起源主要与大气灰尘,农业活动,该地区的植物类型,土壤特征和环境污染有关。从辐射保护的角度来看,相关的放射学风险很重要,最近报告了一些研究[3-6]。自然存在的放射性材料(规范),例如40 K和238 U,232 TH及其腐烂产物,它们存在于土壤[7,8],岩石[5,9],水[10-12]和建筑材料[13-17]等环境材料中,可能对人类健康有害。基于土壤的地质形成,土壤中放射性的分布取决于其得出的岩石类型以及其地质位置的性质[18]。土壤不仅充当人类连续辐射暴露的来源,而且还充当以灰尘形式将放射性物质运输到呼吸系统中的一种手段[19]。许多因素影响不同地理环境组件(例如土壤,沉积物,水,尘埃)中规范的分布,包括风化过程,局部地质和气候条件[20]。如果不考虑气态ra吸入,则沉积物或土壤中规范的存在通常与外部辐射暴露有关。自从水中暴露于标准涉及多种途径,由于低水平
颗粒,从而照射宿主有机体[2]。天然放射性核素在灰尘中的主张取决于其在原始土壤中的数量。此外,灰尘的起源主要与大气灰尘,农业活动,该地区的植物类型,土壤特征和环境污染有关。从辐射保护的角度来看,相关的放射学风险很重要,最近报告了一些研究[3-6]。自然存在的放射性材料(规范),例如40 K和238 U,232 TH及其腐烂产物,它们存在于土壤[7,8],岩石[5,9],水[10-12]和建筑材料[13-17]等环境材料中,可能对人类健康有害。基于土壤的地质形成,土壤中放射性的分布取决于其得出的岩石类型以及其地质位置的性质[18]。土壤不仅充当人类连续辐射暴露的来源,而且还充当以灰尘形式将放射性物质运输到呼吸系统中的一种手段[19]。许多因素影响不同地理环境组件(例如土壤,沉积物,水,尘埃)中规范的分布,包括风化过程,局部地质和气候条件[20]。如果不考虑气态ra吸入,则沉积物或土壤中规范的存在通常与外部辐射暴露有关。自从水中暴露于标准涉及多种途径,由于低水平
Ayse Koyun是环境科学与工程系的博士后科学家以及哈佛大学的工程与应用科学学院。她拥有维也纳技术大学技术化学(材料科学)的医生学位。在她的博士学位期间,AYSE专注于使用原子力显微镜进行材料表征,并研究了建筑材料的老化。作为哈佛大学的博士后科学家,她的研究现在以了解气候和人类健康的气溶胶的影响(悬挂在空中的微小颗粒)的影响。她探讨了诸如构造之类的活动如何产生这些粒子以及它们如何影响吸气者的福祉。在哈佛大学,Ayse采用了一种称为电动力悬浮的尖端技术,以悬浮在空中中的气溶胶颗粒,从而使她能够研究它们在经历各种条件时如何发展,例如光暴露和湿度变化。她检查了来自不同来源的颗粒,从燃烧植物产生的烟雾到特定的化合物。通过阐明这些悬浮的颗粒,她观察到它们的反应和转化,阐明了气溶胶在环境中的行为及其对气候的潜在影响。除了在哈佛大学的工作外,AYSE还为SABER(平流层气溶胶过程,预算和辐射效应)任务做出了贡献,这是一项扩展的空中科学测量计划,研究了上层对流层和下层平流层(UTLS)的运输,化学,微物理和辐射特性。利用NASA WB-57高海拔研究飞机,Ayse有助于表征任务期间收集的微型气溶胶。SABER部署提供了对气溶胶尺寸分布,成分和辐射特性的广泛详细测量,以及不同区域和季节中相关的微量气体。这些观察结果对于提高全球模型准确模拟平流层气溶胶加载变化的辐射,动力学和化学影响的能力至关重要。ayse的总体目标是提供有关气溶胶颗粒对我们世界的起源,转化和影响的关键见解。通过为气候模型的发展做出贡献,并制定了减轻气溶胶的不利影响的战略,她的目标是对气候研究和公共卫生产生有意义的影响。最终,她在实验室和Saber任务中收集的实验数据有助于完善全球化学气候模型,从而弥合了科学发现和大规模模拟之间的差距。
臭氧和气溶胶(在较低的大气中)NOAA中进行了广泛的观测和建模研究,以了解导致低大气中臭氧的生产和趋势的排放和过程。臭氧是一种短暂的气候污染物,也是空气粉的主要组成部分(烟雾)。大气气溶胶(悬浮在空气中的pardcle)对气候束缚具有与之相关的大型不确定的影响。NOAA Sciendsts已经在密集的活动和实验室研究中探索了气溶胶的来源,然后通过Addidonal Field活动以及通过Addidonal-the-of-of-of-of-of-the Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Art-Artimate Modeling Acdvides来探索气溶胶对气候的影响。
北极地区是对当前气候变化最敏感的领域之一;通过涉及海洋,大气,生物圈,岩石圈和冰圈的连接,它们会响应,放大和驱动地球系统中其他地方的变化,因此,了解它们的作用对于设置可靠的预测气候模型至关重要。尤其是,大气气溶胶通过太阳照射的散射和吸收和作为云凝结核的来源而与气候强烈相互作用。尽管这些过程是众所周知的,但极性区域的气溶胶的定量和定性(气候强迫迹象)受到较大不确定性的影响。主要的不确定性包括相对的云/雪表,反照率以及高纬度处气溶胶的尺寸分布和化学成分的稀缺空间覆盖率。以提高我们对北极气溶胶的尺寸分布,大气负荷和化学成分的了解,自2010年以来,北极地区的连续测量和采样运动正在进行中:Thule(North Greenland)(North Greenland)和NY Alesund(挪威斯瓦尔巴德岛)。在Thule,每天或其他所有样品全年收集的24小时样品
排放包括气溶胶,通过反射阳光,主要通过云覆盖物来产生负强迫,冷却,因为气溶胶用作云的凝结核。因此,传统的污染控制导致较少的气溶胶,从而通过减少云覆盖并使更多的太阳辐射到达地球表面,从而引起积极的强迫,变暖。我们根据卫星观测到北太平洋和北大西洋吸收的阳光增加的卫星观察结果评估了海上排放控制的强迫为0.5 w/m 2。6强迫半瓦是解释异常变暖所需要的,如图3。除去了El Nino对全球变暖的贡献后,2023年和2024年仍有0.3°C的异常变暖(图。3b)。正在进行的太阳能最大值贡献0.1°C的变暖,而气雾剂降低贡献0.2°C,这均为简单的强迫响应计算,均为以下内容,7,因此整个变暖被解释了。通过变暖的地理分布提供了确认(图4)。变暖发生,特别是从2020年开始,在北半球发生气溶胶强迫发生的纬度上。北太平洋和北大西洋的温度升高已经对全球变暖做出了重要的贡献,就像热带地区的El Nino一样(图4),对气溶胶强迫的反应仍在增长。
平流层气溶胶通过其直接辐射效应影响地球的能量预算。Argos仪器将同时在多个视图方向上在多个波长处收集大气气溶胶的肢体散射数据。这种致密的采样可以减少气候模型计算的不确定性,使沃尔克尼式喷发全球气溶胶载荷增加了2-3倍。argos可以被视为下一代肢体剖面。这是Invest计划的第一个托管有效载荷(通过Loft Orbital),仪器和测量概念利用GSFC的IRAD计划和ESTO的仪器孵化器计划IIP。
COVID-19 疫情引发了人们对交叉污染风险的担忧,尤其是在医院环境和重症监护病房 (ICU)。感染患者产生的含病毒气溶胶可以在通风房间内传播,使进入房间的医务人员面临风险。使用纹影光学方法发现的实验结果表明,咳嗽和正常呼吸产生的气流会因所用的氧合技术而改变,尤其是在使用高流量鼻导管时,这会增加潜在传染性空气传播颗粒的脱落。本研究还使用基于格子波尔兹曼方法的 3D 计算流体动力学模型来模拟负压下 ICU 室内的气流以及患者咳嗽产生的大量空气传播颗粒的运动。研究了不同缓解方案对通过通风系统提取的可能含有 SARS-CoV-2 的气溶胶数量的影响。数值结果表明,适当的床位方向和额外的空气处理装置定位可以使提取的颗粒数量增加 40%,并使脱落后 45 秒沉积在表面的颗粒数量减少 25%。这种方法可以为更全面地解决医院污染风险奠定基础,因为该模型可以看作是一个概念证明,并适用于任何房间配置。