2022 年 6 月 9 日 致:加布·阿尔博诺兹 (Gabe Albornoz),蒙哥马利县议会议长 发件人:马克·埃尔里奇 (Marc Elrich),县长 汉斯·里默 (Hans Riemer),规划、住房和经济发展委员会主席 主题:第 13-22 号法案《综合建筑脱碳》的介绍 我们已经合作制定立法,以加速该县建筑行业的脱碳。第 13-22 号法案《建筑 — 综合建筑脱碳》定于 6 月 14 日在县议会提出。该法案要求县长在 2024 年 1 月 1 日之前颁布针对新建筑、重大翻修和扩建的全电动建筑标准。该立法旨在加速全国和蒙哥马利县建筑行业已在进行的向 100% 电力系统迈进的变革。全电动建筑不使用依赖化石燃料燃烧的系统(例如天然气炉和锅炉),而是利用市场上现有的技术(例如热泵、电热水器、电烹饪),这些技术更清洁、更节能、更具成本效益。与马里兰州气候变化委员会到 2024 年实现新建筑电气化的最新建议一致,该立法也反映了纽约市、圣何塞、旧金山和西雅图等司法管辖区颁布的法令。联合国气候变化政府间小组 (IPCC) 的最新报告发出了严厉警告,即现在需要采取紧急缓解措施,以避免灾难对我们的气候、经济和我们的生活方式造成影响。按照目前的排放速度,到 2030 年,地球的变暖将不可逆转地超过 1.5 摄氏度,这是世界各国领导人在《巴黎气候协定》中采用的最高水平。最近发生的局部洪灾表明,蒙哥马利县远未免受气候变化的破坏性影响。
yttrium硼酸盐用欧洲离子掺杂,通过在900 o C的消气炉中的固态合成制备4小时,而在消音炉中,在1000 o C再次制备了1000 o C的兰田和铝制硼酸盐。所产生的材料是细的白色粉末。在稀土离子中,Europium是最常用的激活剂之一,因为EU 3+和EU 2+的离子可以用作宿主晶格中的发射位点。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。 进行样品的光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。 YBO 3:EU 3+磷光是光学活跃的,化学稳定。 它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。 在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。 虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。 使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。YBO 3:EU 3+磷光是光学活跃的,化学稳定。它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。
钢铁行业目前正在转型过程中,以便将来能够以更环保的方式生产。Sec-Ondary原材料钢废料在这种转变中起着至关重要的作用,因为制造过程中的回收废料在环保和可持续性上。但是,钢铁行业中钢铁废料的使用增加涉及新的挑战。必须更改过程,必须保持产品质量,并且必须管理吞吐量的增加和需求。数字化和AI技术的使用可以帮助优化和自动化新过程。在工业环境中使用AI时,通常会有一个挑战,即没有足够的质量数据。为了缩小这一差距,是通过应用一种新颖的耕作技术创建和使用了新的欧洲废料类别的新数据集。创建,甚至更多此类域数据集的注释需要大量的时间和专家知识。出于这个原因,使用不同类型的增强物来实施一种自我监督的方法,以提取诸如钢废料等内在无序物体的典型细粒结构。这些结果用于控制废料输入以及废料使用情况,从而自动化过程。钢生产过程中使用的废料通常在原点和组成方面有所不同,这使得编译更加困难。编译废料混合物时,钢生产商通常依靠经验或必须进行复杂的试验。实施了一种机器学习方法,可用于模拟和优化不同的废料组合。基于这些模型,开发了一种新的方法来估算不使用其他传感器的标准过程参数中使用的输入材料的化学含量。在异质工业环境中AI模型的整合是一个主要挑战。需要根据需要对环境基础架构进行调整或创建。为了嵌入各种解决方案,合并了不同的Machine学习技术,根据需要建立所需的基础架构,并实施了在线模型和接口供生产性使用。总而言之,本文提出了一个由AI驱动的整体系统,该系统可以融合各种技术,优化钢废料工艺,并自动化废料工作流程,从废料进入到基本氧气炉的结束。
IL电力合作社记录的激励措施IL电力合作社协会(AIEC)从2010年5月至2011年10月协调了一项名为Home for Illinois电力合作社的主要住宅能源效率计划,从而训练了各种效率措施。AIEC是代表25个伊利诺伊州分销电动合作社的全州贸易协会,该协会为伊利诺伊州102个县的90个县的全部或部分提供了300,000多名消费者。房屋使用250万美元用于美国联邦重新投资和回收法(ARRA)资金,这些资金是由能源部通过国家能源办公室分配的。家庭管理员直接向IL州能源办公室(在IL DCEO内)报告。除了每月进度和向州能源办公室的财务报告外,在该计划正在进行的过程中,还向DCEO和DOE报告了一系列季度指标。最后,该家庭计划在2011年秋季进行了为期一周的联邦DOE审计。家庭计划为住宅能源审核,隔热和气候,热泵/炉/空调升级和热泵热水器提供了激励资金。对合作成员的房屋进行了近3500次住宅审计,而ARRA资助则在855%以上的房屋中升级了效率。通过家中促进的地热热泵,由943个地热或地面源热泵系统促进。这些系统的平均成本为$ 15,829.77。他们平均每个安装4吨,平均成本为每吨安装地热容量3,957.44美元。所有地热系统都必须满足能量之星的最低资格,以获得激励措施。这些系统主要是水平和垂直闭环装置。有1,500美元的回扣激励措施用于安装地热热泵。每个合作成员只有一个折扣 - 带有多个地热单元的装置只有一个回扣。绝大多数系统都是改造项目 - 只有79个进入了新建的房屋。剩余的864个地热系统已安装在现有房屋中,取代了现有的供暖/冷却系统。家庭计划记录了被地热系统取代的加热/冷却系统的类型。到目前为止,最受欢迎的替代品是与中央空气冷却系统的燃气炉或锅炉的传统组合。在864个改造中,超过一半(444)的气体/电力组合用于加热和冷却。(数据未分解在热水锅炉和强制气炉之间。)
执行总结欧洲钢铁行业是温室气体的重要发射极,因此面临着脱碳的压力,以便与欧盟的气候目标保持一致。碳捕获,存储和/或利用率(CCS/U)技术通常被吹捧为重工业脱碳的“全部捕获”解决方案,但是它们的有效性和相关性在整个应用程序中差异很大。本报告在欧洲的铁和钢制造业中对CCS/U技术进行了全面评估。我们探索了各种钢生产路线的碳捕获选项,包括爆炸炉 - 基本氧气炉(BF-BOF)和直接减少的铁电弧炉(DRI-FEAF)路线。我们发现,用碳捕获的现有BF-BOF植物不太可能具有成本竞争力,尤其是在可以以有竞争力的成本生产氢(H2)的地方,这将使基于H2-DRI-DRI-DRI-DRI-EAF的制造材料有利。在短期内,考虑其商业可用性,将碳捕获的最有利选择是将天然气(NG)用作该路线(NG-DRI-EAF)的原料。但是,鉴于技术和市场发展的缓慢,我们预计捕获碳在钢铁行业中的作用将有限,其应用主要仅限于独立案例。捕获的CO 2可以重新使用为有价值的产品(CCU)。但是,虽然一些项目已经探索了利用钢生产中捕获的CO 2的燃料,化学物质和材料(例如捕获的CO 2排放的运输和存储(CCS)应优先于CCU。Thyssenkrupp将钢制磨坊气体转化为燃料和化学品,以及Arcelormittal的倡议,例如用于生物乙醇的Steelanol),这些技术在很大程度上仍处于试验阶段。总体而言,相对于行业的整体排放,CCU可能会提供有限的排放量,取决于有效的碳捕获过程,并且最终依靠更可持续的替代方案(如Dri-eaf和EAF)和EAFS,带有再生废料。其他问题包括嵌入产品中的“延迟排放”,能源使用的间接排放以及CO 2转化为甲醇等过程的重要能量需求。但是,在CO 2值链的这一部分中,挑战仍然存在。运输和存储的成本和可行性仍然是一个问题,欧洲存在的地质限制也是一个问题,大多数自然的储层集中在北海。欧盟尚未采用共同的规范和标准来规范其CO 2运输和存储网络,为投资者和项目开发人员增加了另一层不确定性。从气候的角度来看,CO 2运输和存储的最大问题仍然是CO 2泄漏的相当大风险,无论是在运输过程中还是在存储储层中。总而言之,尽管CCS/U技术将在脱碳重工业中发挥作用,但它们在铁和钢铁行业中的部署必须仅限于不使用绿色氢运行的DRI植物。话虽如此,优先考虑使用CCS/U的替代钢生产路线,例如使用可回收的消费后废料,例如使用可回收的消费后废料,更与气候目标更加一致。重新评估欧盟政策和资金以专注于减少排放,而不是CCS/U部署以获得经济机会。
湾区空气质量管理区(“ BAAQMD”或“空中区”)工作人员正在寻求对第9条,规则4:来自粉丝型住宅中央熔炉的氮氧化物(规则9-4”(规则9-4)和第9条,规则6:氮氧化物的排放的评论。规则9-4当前适用于单户住宅中常见的天然气燃气空间加热炉,规则9-6适用于在住宅和商业应用中常见的天然气燃气热水器。这些来源产生了来自海湾地区来源的大部分氮氧化物排放。空气区的2017年清洁空气计划确定了氮氧化物排放减少的重要性。请注意,在工业,机构和大型商业场景中使用的较大锅炉通常遵守第9条,规则7:工业,机构和商业锅炉的氮氧化物和一氧化碳,蒸汽发生器和工艺加热器(“规则9-7”)。规则9-7的设备不受本规则修正案的影响。规则9-4当前在中央炉子上施加了炉子(40 ng/joule)在炉子(40 ng/joule)中产生的有用热量的40纳米纳米氧化物(NOX)排放限,其最大热量输入等级为175,000英国英国热量单位(BTU/小时),并要求该式炉子限制该规则,以限制该规则的限制。航空区工作人员打算在短期内提议较低的NOX排放限制为14 ng/joule,然后在下面介绍的零诺克斯要求之前。此尺寸范围内的炉子用于大多数单户住宅,一些多单元住宅和海湾地区的一些小商业空间,但规则9-4目前仅适用于住宅炉。1目前广泛使用此技术,这些类型的炉子通常可以安装而无需进行大量升级。草稿修订还将规则的适用性扩展到非住宅设置中使用的设备以及不被视为“风扇型中心炉”的设备,包括墙壁炉,直接通风单元和其他天然气燃气的空间供暖单元。规则9-6当前为小型锅炉和热水器设置NOX排放标准,现有标准根据尺寸和设备的应用而变化。如下所述,空中地区工作人员打算针对这些锅炉和热水器提出零诺克斯的要求。如上所述,规则9-4和9-6的修订草案还包括引入拟议的天然气炉炉和热水器的拟议的零诺克斯排放标准。技术目前确实存在符合零诺克斯标准的技术,但是它们的可用性有限,可能很昂贵。因此,该标准将是技术和市场强迫,员工正在考虑提出长期合规性日期为2027年至2031年,取决于设备类型,使用和尺寸。员工正在准备一份报告,该报告将审查所有当前可用的技术及其各自的成本和市场可用性。员工欢迎评论详细说明目前(并预计将是)的任何零诺克斯技术,以及对当前提议的合规性日期的评论。正如在本研讨会报告中所讨论的那样,该地区的工作人员打算为未来有效的规则标准草案提供,以为制造商,供应商和消费者提供足够的计划范围,以便将零X设备扩散到市场上,同时实现减少发电量和积极的健康状况。虽然目前可以使用某些技术来符合拟议的标准,但修订草案包括地区工作人员的承诺,以重新评估零诺克斯解决方案的可用性和可访问性