摘要:火星探测计划分析小组已将测量火星大气的状态和变化作为未来几年的重点研究。气球载仪器可以弥补当地固定着陆器和全球轨道器观测之间在中尺度距离上时间和空间分辨率的差距。使用气球系统实现这一目的的想法本质上并不新鲜,在过去几十年中已经提出过。虽然这些概念被认为是在进入和下降过程中的空中部署,但本研究中概述的概念重新审视了从火星表面发射着陆器的有效载荷甲板。这种部署选项今天主要得益于微电子和传感器小型化技术的进步,这使得气球探测器的设计比以前提出的系统小得多。本文介绍了该仪器的可行性评估,并进一步详细介绍了科学和操作概念、稻草人传感器套件、其系统组件以及相关的规模和预算估算。它还补充了提出的分析方案,用于评估、管理和减轻自动将此类气球系统从行星表面发射所涉及的部署风险。
• 因果关系:事件都有原因,有时简单,有时多方面。 破译因果关系及其介导机制是限制可能的解决方案的一项主要科学与工程活动。 ETS1.A:定义和界定工程问题:设计任务的标准和约束条件定义得越精确,设计解决方案就越有可能成功。约束条件的指定包括考虑科学原理和其他可能限制可能解决方案的相关信息。 • 能量和物质:跟踪流入、流出和流经系统的能量和物质有助于人们理解系统的行为。 • MS-ETS1-3 工程设计:分析测试数据以确定几种设计解决方案之间的相似点和差异点,以确定每种设计解决方案的最佳特性。这些设计解决方案几乎在每一个科学领域都有重要的发现,而且科学发现可以组合成一个新的解决方案,以更好地满足成功的标准。 • 科学、工程和技术的相互依赖性:工程进步导致了整个行业和工程系统的发展。 ETS1.B:开发可能的解决方案:有系统的流程来评估解决方案,看它们如何很好地满足问题的标准和约束。有时可以将不同解决方案的各个部分组合起来,以创建一个比任何前辈都更好的解决方案。 ETS1.C:优化设计解决方案:虽然一个设计可能不会在所有测试中表现最佳,但确定在每项测试中表现最佳的设计的特性可以为重新设计过程提供有用的信息 - 也就是说,其中一些特性可以纳入新的设计中。
慢性血栓栓塞性肺动脉高压(CTEPH)是一种疾病,是由有组织的纤维状凝块持续阻塞肺动脉动脉引起的,导致流量再分配和肺微血管微血管血管的继发重塑。cteph是肺高血压(pH)的显着原因,如果没有治疗而导致右心力衰竭和死亡[1]。肺部内膜(PEA)是已建立的治疗性干预措施,具有最多的证据,是针对CTEPH患者的指南建议治疗。,大约三分之一的患者不符合PEA的资格,因为在手术过程中技术上是不可能的,或者存在禁止手术的严重合并症。另一方面,大约一半接受PEA的患者具有持续的pH值,通常是轻度,但有时是中度或重度,需要额外的治疗[2-4]。此外,CTEPH患者可能由于无效的抗凝或血栓形成而出现肺栓塞,即使在那些以前接受过治疗手术的患者中,也会导致复发性pH值。患有无法手术的CTEPH和豌豆后残留或复发性pH的患者均用肺动脉高压(PAH)患者治疗。然而,尽管用PAH特异性药物进行治疗,但这些患者中的绝大多数仍然有明显的症状。气球肺血管成形术(BPA)是一种新兴的治疗干预措施,是Feinstein等人首先描述的。CTEPH患者[5]。然而,尽管血流动力学的改善,但由于重新灌注肺损伤和肺部出血的显着并发症的频率很高,因此被放弃了。日本研究人员通过重复上演的过程对BPA进行了限制,以减少再灌注肺损伤和肺出血[6,7]。越来越多的研究最近显示出血流动力学,症状和功能能力的改善,并通过重新固定的BPA技术降低了重大并发症的率显着降低[8-11]。因此,2017年10月,目前的中心开始了一个BPA计划,该计划被认为是无法使用或持续性或经常性pH的患者。本研究旨在报告当前中心BPA的初始经验,该中心是第三级转诊中心。
在过去的几十年中,通过Balloon计划成熟的NASA空间任务的例子。在1980年代后期和90年代的宇宙微波背景(CMB)气球浮游在设计Wilkinson Microwave各向异性探针(WMAP)以及Planck Spacecraft核心的焦平面仪器中的关键地面工作。在气球传播的仪器上开发并证明了Reuven Ramaty高能太阳能光谱成像仪(Rhessi)任务的锗探测器(Rhessi)任务。镉 - 锌 - 泰耐酸(CZT)检测器阵列的三个气球阵列产生了设计的数据,以设计Swift Burst Alert Alert Telescope仪器,并且气球支持Fermi大面积大面积Gamma-Ray望远镜的完整工程原型,该望远镜发射了2008年。
摘要。本文介绍了将 Flettner 气球作为风能捕获系统对集装箱船稳定性的影响。Flettner 气球是一种电力发电机,充满氦气,绕水平轴旋转,并通过电缆输送电力。它响应风力绕水平轴旋转,有效地产生清洁、可再生的电力,成本低于所有竞争系统。作者确定的本文主要观点是:计算影响气球的力,计算气球对船舶横向和纵向稳定性的影响,计算船舶新排水量、新吃水、新 GM 和横摇周期。作为本文的结论,读者会发现船舶的横向稳定性会随着 0.01 的小值而略有下降,而纵向稳定性将提高 0.7532。本文表明,安装在集装箱船上的 Flettner 气球是一种捕获风能的可行概念。
鉴于轻型无线电和处理技术的可用性,使用气象气球的频谱传感系统变得可行。这种气球可在高达 40 公里的空域中航行,并可提供鸟瞰图和清晰的地面和空中频谱使用情况。在本文中,我们介绍了 SkySense,它是 Electrosense 传感框架的扩展,具有移动 GPS 定位传感器和本地数据记录。此外,我们还介绍了 6 种不同的传感活动,针对多种地面或空中技术,如 ADS-B、AIS 或 LTE。例如,对于 ADS-B,我们可以清楚地得出结论,检测到的飞机数量对于每个气球高度都是相同的,但由于碰撞,消息接收率会随着高度的增加而急剧下降。对于每个传感活动,都描述了数据集,并给出了一些示例频谱分析结果。此外,我们还分析和量化了从空中感知时可见的重要趋势,例如温度和硬件变化、环境干扰水平的增加以及轻量级系统的硬件限制。一个关键的挑战是系统的自动增益控制和动态范围,因为在 30 公里以上导航的无线电可以看到非常广泛的可能信号电平范围。所有数据都可通过 Electrosense 框架公开获取,以鼓励频谱感知社区进一步分析数据或激励使用气象气球进行进一步的测量活动。
长时间气球任务是科学研究和空间技术开发的重要平台。这种系统的热分析对于任务的成功至关重要。尽管科学研究通常在漂浮高度进行,但上升阶段通常不进行操作,而上升阶段会出现极冷条件,这是由于相对风速引起的对流效应以及对流层顶的低温,使这种情况成为一个典型案例。本文对上升过程中的热环境条件进行了深入研究,特别是获得了风、温度和辐射热负荷与高度的关系。该研究基于从不同来源获得的真实数据,包括大气探测、雷达和卫星,以及细致的统计处理。这项研究的重点是欧洲主要的平流层气球发射场之一 Esrange(瑞典),这是瑞典航天公司的中心,分析是在夏季进行的。但是,该方法可以扩展到任何其他位置和时期。例如,研究了水平风对平板的对流效应,并量化了上升阶段的热传递。在这种情况下发现过冷度约为 7 °C,这值得进行专门的分析。
摘要该论文介绍了有关近实时大气发声系统的研究。这项研究的主要目的是基于天气气球的天气音响系统的开发和测试。该系统包含一个冗余的辐射系统,一个包含天气气球和固定系统以及地面站的起重平台。该系统的几项测试在2019年8月和9月进行。高度,可靠性,对天气条件和数据收敛性的抵抗力。在测试中,开发了此类任务的新程序。对ILR-33琥珀色火箭进行了最终测试,作为预发射程序的一部分。该测试成功,并允许使用获得的大气数据进行进一步处理。得出了几个测试后的结论。天气气球发声的高度主要取决于天气条件,泵送的气体和有效载荷的重量。机组人员的发射场所和经验在任务的最终成功中也起着重要作用。
尽管相对于总飞行次数而言,热气球事故并不常见,但过去二十年来,热气球事故的发生率却显著上升。本研究旨在对之前确定的热气球事故致病因素进行分类。分析了 103 份 NTSB(美国国家运输安全委员会)事故报告,并使用 HFACS(人为因素分析和分类系统)作为框架对热气球事故的致病因素进行分类。确定了导致热气球事故的因素的相对重要性。我们发现环境因素是最重要的致病因素,其次是技能错误,是第二大致病因素。我们的研究结果将有助于制定对策,防止未来再次发生热气球事故和事件,并可能深入了解与气球坠毁严重程度相关的高风险因素。引用本文:B. Kilic“通过人为因素分析和分类系统分析热气球事故”航空航天技术杂志,第13,第1,页2020 年 1 月 17-24 日 人为因素分析和分类分析
致谢 这项工作部分由瑞典国家空间委员会 (SNSB) 通过 NRFP-3 计划和吕勒奥理工大学 (LTU) 资助。我们感谢北方高性能计算中心 (HPC2N) 提供执行本海报中展示的数值模拟所需的计算机资源。我们还要感谢瑞典空间公司 (SSC) 的 Martin Bysell、Klas Nehrman、Mikael Viertotak 和 Per Baldemar 的协助和宝贵的讨论,这些有助于完成这项工作。