1 波兰格但斯克理工大学化学学院制药技术和生物化学系,Narutowicza 11/12, 80-233 格但斯克;wioletta.brankiewicz@pg.edu.pl (WB);s169840@student.pg.edu.pl (KS) 2 波兰格但斯克大学化学学院分子生物化学系,80-308 格但斯克;joanna.okonska@phdstud.ug.edu.pl (JO);24556@gumed.edu.pl (JL);anna.legowska@ug.edu.pl (A.Ł.); krzysztof.rolka@ug.edu.pl (KR) 3 纳米结构生物相互作用部门,Hirszfeld 免疫学和实验治疗研究所,波兰科学院,12 Weigla-Street, 53-114 Wrocław,波兰;marek.drab@hirszfeld.pl * 通讯地址:natalia.ptaszynska@ug.edu.pl (NP);piotr.szweda@pg.edu.pl (PS);电话:+48-58-523-5092 (NP);+48-58-347-2440 (PS);传真:+48-58-523-5012 (NP)
氟康唑是一种抗真菌药物,常用于治疗和预防早产和足月婴儿的酵母菌感染。酵母菌可引起婴儿全身严重感染,包括皮肤、血液、心脏、眼睛和大脑。婴儿的免疫系统比大孩子和成人弱,因此会发生酵母菌感染,感染可能导致长期健康问题甚至死亡。尽管氟康唑在婴儿中经常使用,但关于其药代动力学或该药物在婴儿体内如何代谢的数据却很少。关于氟康唑对婴儿的安全性和有效性的数据也很少。需要进行这些研究来确定氟康唑的代谢过程、安全性和有效性,以及治疗和预防早产和足月婴儿以及使用生命支持系统的婴儿酵母菌感染的最佳剂量。
静脉导管插入术、近期腹部大手术、坏死性胰腺炎、多个部位的念珠菌定植、大剂量(>20 毫克泼尼松当量/天)皮质类固醇治疗、严重中性粒细胞减少症。o 注意:根据 2022 年斯坦福抗生素图谱,氟康唑对光滑念珠菌的活性与卡泊芬净相似。88% 的光滑念珠菌分离株对氟康唑敏感(且呈剂量依赖性),而 93% 的分离株对卡泊芬净敏感。2. 对近期接触过唑或有氟康唑耐药念珠菌(如克柔念珠菌)病史的患者进行侵袭性念珠菌病的经验性治疗3. 免疫功能低下的宿主中已证实或疑似侵袭性真菌感染o 请注意,氟康唑应用于易感念珠菌感染。氟康唑“敏感、剂量依赖”的念珠菌分离株可用每日剂量≥800mg 的氟康唑治疗。如果您有疑问,请与 SASS-ASP 或 ID 团队讨论。
某些甲唑,包括氟康唑,与心电图上QT间隔的延长有关。氟康唑通过抑制整流器钾通道电流(IKR)引起QT延长。可以通过抑制细胞色素P450(CYP)3A4引起的其他药物(例如胺碘酮)引起的QT延长(请参阅第4.5节)。在上市后的监视期间,服用氟康唑的患者在QT延长和扭转方面存在非常罕见的病例。这些报告包括患有多种混杂危险因素的严重患者,例如结构性心脏病,电解质异常和可能有贡献的药物(请参阅第4.8节)。低钾血症和晚期心力衰竭患者的发生风险增加,威胁性心律失常和扭转扭矩。
摘要这项研究的目的是评估体外Camellia sinensis(绿茶)植物提取物的抗真菌活性和细胞毒性,并评估两种念珠菌菌株对两性霉素B和氟康唑的抗真菌作用。从HIV阳性患者的口腔中分离出来。使用绿茶提取物和抗真菌剂的系列稀释液在浮游细胞中测定最小杀真菌浓度(MFC)和最小抑制浓度(MIC)。确定在MIC和MFC处的提取物浓度后,为每个应变制备生物膜。评估了小鼠巨噬细胞中的细胞毒性(RAW 264.7),以评估该物质的细胞活力。菌落形成单元(CFU/ML),并使用Mann-Whitney检验(P <0.05)对数据进行了统计评估,用于生物膜,MIC和MFC的视觉观察以及ANOVA和Tukey的细胞毒性。结果表明分析细胞中绿茶提取物的生存能力。在这项研究中得出结论,Sinensis(绿茶)提取物在浮游生物细胞和生物膜中显示出对所有评估的念珠菌菌株的抗真菌活性,对RAW 264.7没有细胞毒性作用。氟康唑在浮游细胞中表现出杀真菌作用,而两性霉素B对白色念珠菌菌株和非白色念珠菌菌株中的微生物抗性表现出抗真菌作用。关键字:两性霉素B;生物膜;山茶花;念珠菌;氟康唑。Iseladas da Cavidade Bucal De Pacientes HIV Potivos。apósdesioninçãodadaconcentraçãododo na cim e na cfm,foi preparado o Biofilme de cada Cepa。摘要这项工作的目的是评估山茶花蔬菜提取物(绿茶)的体外抗真菌活性和细胞毒性,并评估22个Candida SPP中两性霉素B和氟康唑的抗真菌作用。在绿色和抗真菌茶提取物的系列稀释液中确定了浮游细胞中最小杀菌剂和最小杀真菌浓度(CFM和CIM)。细胞毒性,以验证该物质的细胞活力。随后,使用Mann Whitney测试(P <0.05)对生物膜进行了统计评估菌落形成单位(UFC/ML),CIM和CIM和CFM,ANOVA和TUKEY的视觉观察,用于细胞毒性。结果表明,分析的细胞中绿茶提取物的生存力。在本研究中得出结论,C. sinensis(绿茶)提取物在评估的所有念珠菌菌株中具有抗真菌活性,生物膜具有抗真菌活性,并且对RAW 264.7没有细胞毒性作用。氟康唑对浮游细胞具有杀菌作用,而两性霉素B对白色念珠菌具有抗真菌作用,而非阿尔比科则具有微生物耐药性。关键字:两性霉素B;生物膜;山茶花;念珠菌;氟康唑。
取决于所涉及的酵母菌物种,与其他唑烷抗真菌剂的抗性主要机制涉及(i)通过(i)改变型氨基酸14α-甲基甲基酶的氨基酸组成,从而损害该药物在细胞中的积累,(II)增加药物外生物的含量(iiiiiiiiii)。有报道说,除白色念珠菌以外的念珠菌物种上都有近次感染,这些念珠菌通常固有地降低了易感性(C. glabrata)或对氟康唑的抗性(例如,C. Krusei,C。Auris)。这种感染可能需要替代性抗真菌治疗。在白色念珠菌中,麦角固醇合成途径的阻塞主要是由于ERG3编码的固醇C5,6-二酸酶的阻滞而引起的,在耐药物种中编码的candida glabrata,candida glabrata,candida glabrata,candida blabrata,主要是由cr anderiped and Drection and Drectruationant and Drection 2 and Drectraught and Drection 2 and Drectraption 2)细胞中药物的外排。因此,对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。 在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。对氟康唑的耐药性通常会赋予对其他偶氮抗真菌剂的抗性。在Neoformans中,研究表明,该物种中存在相同的主要耐药机制,并且这些机制可能会受到事先暴露于Azole抗真菌药剂的影响。
arrowia lipolytica 属于子囊菌门、酿酒菌亚门和双足菌科 (1)。除了工业用途 (2) 之外,Y. lipolytica 还广泛存在于食品、环境和动物中 (1)。由于其能够在 32°C 以上不稳定地生长,因此通常认为该菌种可安全用于工业用途 (1)。Yarrowia lipolytica 是一种机会性病原体,可引起侵袭性念珠菌病 (3)。在体外,该菌种被认为对氟康唑敏感 (4)。第一个 Y. lipolytica 基因组 (CLIB122) 于 2004 年发布 (5)。我们报告了对氟康唑有抗性的 Y. lipolytica 临床分离株的基因组草图,该分离株是从溃疡性结肠炎手术后的血培养中采集的。有趣的是,尽管之前曾接触过唑类药物,但使用梯度浓度试纸法(Etest;bioMérieux),该菌株的氟康唑 MIC 为 0.256 mg/mL。患者成功地用卡泊芬净治疗。该菌株在 35°C 的显色琼脂平板(CAN2;bioMérieux)上生长,并使用 Vitek 基质辅助激光解吸电离 - 飞行时间质谱 (MALDI-TOF MS) 仪器(bioMérieux)进行鉴定。在溶菌酶细胞壁消化后,使用 QIAmp DNA minikit(Qiagen)提取基因组 DNA。使用 Illumina DNA 制备标记试剂盒(Illumina)构建文库。简而言之,使用珠状转座子技术和集成 DNA 技术 (IDT) 的 Illumina DNA/RNA 独特双重 (UD) 索引集将 30 ng 总 DNA 片段化并进行索引。使用 Qubit 高灵敏度试剂盒 (Thermo Fisher Scienti ) 对文库进行扩增、纯化和定量。最后,将 9 pM 汇集和变性文库放入 2 250-bp v2 试剂盒 (Illumina) 中,并使用 MiSeq 仪器 (Illumina) 进行测序。使用 CLC Genomics Workbench v22.0 (Qiagen) 中的 Trim Reads v2.5 和 De Novo Assembly v1.5 工具对原始读取进行修剪、组装成重叠群并进行搭建。使用覆盖率与长度图丢弃覆盖率为 , 10 且长度为 , 500 bp 的重叠群 (6)。使用 QUAST v5.0.2 对最终的 scaffold 集进行质量分析 (7)。总基因组大小为 20,255,408 bp,分布在 521 个 scaffold 上(覆盖率为 100 ),N 50 值为 105 kbp(最长 scaffold,397 kbp),GC 含量为 49.03%。AUGUSTUS v3.4.0 (8) 使用白色念珠菌训练数据集预测了 6,151 个蛋白质编码基因,使用 tRNAscan-SE 2.0 检测到了 484 个 tRNA 基因 (9)。使用 BUSCO v5.3.2 和 saccharomycetes_odb10 谱系数据集 (10) 估计基因组完整性为 95.3%。平均核苷酸同一性 (ANI) 计算
摘要:新兴的威胁生命的多种耐药性(MDR)物种,例如Haemulonii物种复合物,Clavispora Lusitaniae(Sin。C。lusitaniae)和其他念珠菌在不久的将来被认为是人类健康风险的增加。(1)背景:许多研究强调,耐药性的增加可能与念珠菌中的几种毒力因素有关,并且其知识对于制定新的抗真菌策略也至关重要。(2)方法:在G. mellonella幼虫上的疏水性,粘附,生物膜形成,脂肪酶活性,对渗透压的耐药性和毒力为“体内”。(3)结果:观察到种内和间隙的变异性。C. haemulonii表现出较高的疏水性和粘附并形成生物膜的能力。C。lusitaniae疏水较少,是生物膜形成 - 应变依赖性的,并且没有显示脂肪酶活性。幼虫的死亡率明显高于感染Haemulonii和C. lusitaniae的死亡率。(4)结论:在这些非野生型念珠菌和克拉维斯普拉斯分离株中观察到的与其疏水能力相关的生物膜,适应压力并在体内模型中感染的能力,显示出其明显的毒力特征。由于定义毒力的因素与这些真菌对可用于临床使用的少数抗真菌性的抗性的发展有关,因此必须考虑这些细胞的生理学差异以开发新的抗真菌疗法。
1个微生物学单元,大romagna枢纽实验室,意大利47522饼; sofi.monta.msm@gmail.com(M.S.M.); mariavittoria.tamburini@auslromagna.it(M.V.T。); valentina.arfilli@auslromagna.it(V.A。); manuela.morotti@auslromagna.it(M.M.); pasqua.schiavone@auslromagna.it(P.S.); francesco.congestri@auslromagna.it(f.c.); martina.manera@auslromagna.it(M.M.); agnese.denicolo@auslromagna.it(a.d。); francesca.taddei@auslromagna.it(f.t。); laura.grumiro@auslromagna.it(l.g。); silvia.zannoli@auslromagna.it(S.Z.); giorgio.dirani@auslromagna.it(G.D.); vittorio.sambri@unibo.it(V.S.); monica.cricca3@unibo.it(M.C。)2医学和外科科学系 - Dimec,母校Studiorum-博洛尼亚大学,意大利博洛尼亚40126; claudia.colosimo2@unibo.it(c.c. ); martina.brandolini@outlook.it(m.b。 ); Alessandra.depascal3@unibo.it(A.M.D.P.) 3 DIN - 母校训练学的工业工程部门 - 博洛尼亚大学,意大利博洛尼亚40126; giulia.gatti12@unibo.it 4卫生服务研究,评估和政策部门,Ausl Romagna,意大利Rimini 42123; michela.fantini@auslromagna.it *通信:anna.marzucco@auslromagna.it;电话。 : +39-34960957142医学和外科科学系 - Dimec,母校Studiorum-博洛尼亚大学,意大利博洛尼亚40126; claudia.colosimo2@unibo.it(c.c.); martina.brandolini@outlook.it(m.b。); Alessandra.depascal3@unibo.it(A.M.D.P.)3 DIN - 母校训练学的工业工程部门 - 博洛尼亚大学,意大利博洛尼亚40126; giulia.gatti12@unibo.it 4卫生服务研究,评估和政策部门,Ausl Romagna,意大利Rimini 42123; michela.fantini@auslromagna.it *通信:anna.marzucco@auslromagna.it;电话。: +39-3496095714
• Sharma N、Jandaik S、Kumar S.2016. 掺杂氧化锌纳米粒子与抗生素的协同活性:环丙沙星、氨苄西林、氟康唑和两性霉素 B 对抗病原微生物。巴西科学学院 88:1689-1698 • Mehta S、Jandaik S、Gupta D. 2014. 成本效益基质对生长周期的影响