牙髓治疗的目的是预防和控制纸浆和周围感染。氢氧化钙具有有益的生物学特性作为一种植物内药物,并且可以与Cresotin合并以在根管中对细菌进行消毒,尤其是粪肠球菌(E. faecalis),这是根管中最常见的菌株。这项研究的目的是在体外研究氢氧化钙,氯三氧化钙和氢氧化钙和克雷索蛋白钙的抗菌活性(Ca [OH] 2 +cresotin,1:1和1:1),对粪肠球菌。抗菌活性通过琼脂扩散法确定。测试药物被放置在接种琼脂培养基中制造的孔中。在每个板中孵育后测量并记录了生长抑制区,并用ANOVA对结果进行统计分析。联合氢氧化钙和氯三氧化钙的体外抗菌作用(Ca [OH] 2 +cresotin,1:2)的抗菌活性比其他抗菌活性更为突出,氢氧化钙比单独的Cresotin更有效。与其他治疗相比,氢氧化钙和曲霉素联合的抗菌活性更有效地杀死粪肠球菌。
作者对原始稿件中遗漏通讯作者王荣芳的电子邮件地址深表遗憾。王荣芳的电子邮件地址为 rfwang@qust.edu.cn。英国皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
ORCID ID:Kyle A. Alvarado https://orcid.org/0000-0001-6489-2237 Juan B. García Martínez https://orcid.org/0000-0002-8761-7470 David Denkenberger http://orcid.org/0000-0002-6773-6405 摘要:将食物发射到太空的成本非常高。另一种方法是在任务期间使用人工光合作用、温室、非生物食品合成、电细菌和氢氧化细菌 (HOB) 等方法制作食物。本研究比较了预包装食品、人工光微藻和 HOB。每种替代方案的主要因素是其相对质量,因为将有效载荷发射到太空需要高昂的燃料成本。因此,使用美国国家航空航天局开发的等效系统质量 (ESM) 技术对替代方案进行了评估。分析了三项为期 3 年、载有 5 名机组人员的不同任务,包括国际空间站 (ISS)、月球和火星。ESM 的组成部分包括表观质量、散热、功率和加压体积。所有系统选择的电源都是核能。经计算,太空电力与生物质的效率分别为 HOB 和微藻的 18% 和 4.0%。这项研究表明,种植 HOB 是最便宜的替代方案。HOB 的 ESM 平均比预包装食品和微藻低 2.8 倍和 5.5 倍。这项替代食品研究还涉及在全球农业灾难期间为地球提供食物。HOB 的好处包括回收包括 CO 2 在内的废物并产生 O 2 。实际系统将涉及多种食物来源。
在这份白皮书中,我们研究了一种新型的行星科学任务推进系统:一种低温氢氧推进系统(REAPS)。尽管排骨比其他化学推进系统的低温火箭发动机具有相当大的优势,但由于长期在低温推进剂的空间存储中面临的挑战,大部分都将其用于任务的发射阶段。我们表明,被动低温储存技术的新发展可以解决此问题,现在使排骨适合空间推进。排骨发动机比传统的高光发动机具有重要的特定脉冲(I SP)优势,从而减少了发射的大量行星科学航天器。排骨还提供了比传统高光发动机的其他优势,这些优势对于行星科学任务尤其重要,尤其是天体生物学兴趣场所的着陆器。这些包括“清洁”燃烧的排气,类似于仅产生水的燃料电池;可登陆的登陆;使用推进剂发电的可能性比仅使用主电池的任务允许更长的寿命任务。以及将燃料用作辐射屏蔽的可能性。我们建议对地面测试中的行星应用评估低温氢氧推进系统,包括已在MSFC,GSFC和其他地方开发的系统,从而进行了行星应用。
疫苗接种是预防或对抗肿瘤以及其他疾病最有效且最具成本效益的方法之一。1,2 有效的肿瘤疫苗应在佐剂的帮助下诱导广泛的体液反应和细胞免疫反应,包括 CD8 + 细胞毒性 T 细胞 (CTL)、CD4 + Th1 或 Th17 细胞反应。3 – 5 然而,最常用的佐剂铝盐(明矾)通常只能引发强烈的抗体反应,且以 Th2 为偏向,6 并且很少有获准用于人体给药的佐剂能够产生足够的细胞免疫反应。7 能够增强体液和细胞免疫反应的新策略仍然是治疗性肿瘤疫苗开发的重点。作为 FDA 批准的公认安全 (GRAS) 颗粒系统,酵母壳壁(β-葡聚糖颗粒)是
超级电容器被广泛视为最有前途的新兴储能装置之一,它将化学能转化为电能并储存起来。二维 (2D) 金属氧化物/氢氧化物 (TMOs/TMHs) 因其高理论比电容、丰富的电化学活性位点以及通过与石墨碳、导电聚合物等结合组装成分级结构而彻底改变了高性能超级电容器的设计。所实现的分级结构不仅可以克服使用单一材料的局限性,而且可以带来性能上的新突破。本文综述了 2D TMOs/TMHs 及其在分级结构中作为超级电容器材料的研究进展,包括超级电容器材料的演变、分级结构的配置、所调控的电性能以及存在的优缺点。最后,提出了与超级电容器材料发展相关的方向和挑战。
简介:NASA 已确定迫切需要设计、制造和测试原位资源利用 (ISRU) 组件,以便在月球和/或火星上利用风化层资源生产纯净水、氧气和氢气。长期停留在月球或火星表面需要随时可用的纯净水源。水净化后,可用作氧气来源(既可作为居住舱人员的可呼吸空气,又可作为推进剂氧化剂),也可用作氢气作为推进剂燃料。将任何这些资源大量运输到月球或火星表面都很困难且成本高昂,因此必须使用原位资源来生成推进剂和生命支持消耗品。NASA 已明确确定需要开发和测试关键组件,以便从月球两极永久或近永久阴影区 (PSR) 的冰中提取和净化水。月球水可用于生产氢氧推进剂,用于月球运输工具(上升器和着陆器)、可重复使用的地月运输工具,以及最终用于人类火星及更远地区的任务。预计每次任务需要生产 14 至 50 公吨 H 2 /O 2 推进剂。此前从未有人对原位月球水进行过净化和电解。它带来了独特的挑战,与月球水和月球极地环境中存在的危险、有毒和易燃气体有关;以及发射到月球表面的系统通常存在的限制(质量、体积、功率、自主性、稳健性、可靠性和寿命)。这项技术的开发对于人类实现在月球上的可持续存在至关重要。利用该技术支持此类努力还将认证硬件是否可用于火星,在火星上,脱离地球对于机组人员的生存来说更为关键。