仅部分探索了生物技术兴趣的微生物中基因组多样性的隐藏层,并且需要更深入的研究,即需要克服物种水平分辨率。CO 2固定菌群易于进行案例研究等评估。采用了实验室规模的trick流式反应器,成功实现了对人工沼气和富含硫的沼气的同时实现生物泛滥和脱硫化,并还实施了氧气SUP培养。在微量自我条件下,硫化氢去除效率为81%,甲烷含量为95%。甲烷杆菌 dtu45主要出现,其代谢功能与硫分解代谢中的社区范围动力学相关。 gamaproteobacteria sp。中涉及基因组进化。 dtu53,被确定为微量清除液的主要贡献者。 发现了硫化氢氧化途径中变体的阳性选择,并将氨基酸变体定位在硫化物的硫化物入口通道上:喹酮氧化还原酶。 氧气中的SUP填充应变选择是驱动微生物适应的主要机制,而不是物种优势的转移。 选择性压力确定了新菌株的出现,例如在伽马普罗杆菌中。 dtu53,提供了微生物组内功能冗余的深度证据。甲烷杆菌dtu45主要出现,其代谢功能与硫分解代谢中的社区范围动力学相关。gamaproteobacteria sp。中涉及基因组进化。dtu53,被确定为微量清除液的主要贡献者。发现了硫化氢氧化途径中变体的阳性选择,并将氨基酸变体定位在硫化物的硫化物入口通道上:喹酮氧化还原酶。氧气中的SUP填充应变选择是驱动微生物适应的主要机制,而不是物种优势的转移。选择性压力确定了新菌株的出现,例如在伽马普罗杆菌中。dtu53,提供了微生物组内功能冗余的深度证据。
A.有氧化学嗜酸菌通过使用O 2作为末端电子受体氧化的降低无机化合物来产生能量。B.硫氧化细菌是革兰氏阴性棒或螺旋,有时会在细丝中生长。C.丝状硫氧化剂乞g和硫代氏菌居住在硫泉中,污水污染的水以及海洋和淡水沉积物的表面。D.硝化剂 - 氨氧化剂将氨转化为亚硝酸盐,并包括硝基瘤和硝基球菌;亚硝酸盐氧化剂将亚硝酸盐氧化成硝酸盐,并包括硝酸盐和硝酸球菌。E。氢氧化细菌是嗜热细菌,被认为是最早的细菌形式之一。11.5有氧化学性养育物使用O 2作为末端电子受体氧化有机化合物,以进行能量。
土壤微生物长期以来一直被认为是生物地球化学养分周期的关键参与者,尤其是在碳,氮和磷周期内。最近,研究强调了土壤中的微生物介体,这些介体也能够氧化大气痕量气体,例如氢(H 2),一氧化碳和甲烷,但对它们在植物组织中和周围的植物组织中的作用知之甚少。特别是,氢是作为氮固定的副产品生产的,氮是通过细菌活性介导的可用氮的关键生物学来源。但是,该氢副产品的命运目前尚不清楚,值得研究。迄今为止尚不清楚氮固定细菌是否可以内部回收作为节能本身的一种形式,或者是否被附近的植物生长促进细菌使用。如果土壤中的氢氧化细菌也具有促进植物生长的促进性状,这反过来又有助于农作物在不断变化的全球环境中生长和生存。
摘要。镍氧化物(NIO)是一种半导体材料,具有独特的电子结构。由于其独特的电子特性,NIO是光电子,照片催化和诸如太阳能电池等能量设备的各种应用的有趣候选人。在当前的工作中,已经进行了量身定制Nio乐队的差距。一种简单的共沉淀方法,然后使用热处理来合成材料。在热处理之前,对合成材料的X射线衍射研究显示出存在氢氧化镍[Ni(OH)2]。在1000 O C下钙化一小时,揭示了单相NIO。热处理后,发现发现粒径增加了。使用UV-VIS光谱法记录了[Ni(OH)2]和NIO的吸收光谱。分别观察到Ni(OH)2和NIO的TAUC图A的带隙为4.2 eV和1.8 eV。观察到,注意到NIO的带隙显着减少。通过使用FESEM进行表面形态学研究,这表明板材像[ni(oh)2]的结构一样转变为钙化时多面形的Nio。通过能量分散光谱分析证实了镍和氧的存在。
乔治·贝佩特·康科迪亚大学(George Bepete Concordia University),7141 Sherbrooke St. W.,蒙特利尔,QC H4B 1R6。电子邮件:gbepete@gmail.com,george.bepete@concordia.ca,电话:+15148482424 ext。3268(办公室)学术任命,蒙特利尔大学,QC大学材料工程助理教授,2024年 - 现任物理学系2024年助理教授 - 宾夕法尼亚州立大学公园,宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚大学助理研究教授2022 - 2022 - 2024年教育大学教育大学,美国韦特沃特夫妇,乔尼亚工厂,乔尼亚工厂,美国邮政编码。尼尔·科维尔论文:氮掺杂碳纳米管的化学蒸气生长,用于在有机光伏设备津巴布韦大学,哈拉雷,哈拉雷,津巴布韦MSC,可再生能源2009国立大学和科学大学,科学和科学技术,布拉维奥,布拉维奥,Zimbabwe BSC(HONS),2016年荣誉奖。过去的研究经验宾夕法尼亚州立大学物理学系,宾夕法尼亚州立学院,2017-2022,博士后研究顾问:毛里西奥·塞伦斯教授的主要责任包括对使用二维(2D)材料纳米材料合成的研究,该研究使用将分层的材料和将其组成型成型的型号和插入型成型的型号和插入型成型的物质插入中置于效率上的二维材料(2D)材料,以及超导性,超级电容器,碱金属离子电池和光电电池。将石墨烯还原为氢化石墨烯中的还原性功能,并研究了光电中应用的结构和性质之间的关系。达勒姆大学,英国化学系2016年至2017年博士后研究顾问:Karl Coleman教授的主要职责包括有关全长单壁碳纳米管(SWCNT)还原性解散的研究以及对单个SWCNT的电气和光学特性的研究。国家科学研究中心,CNRS,BORDEAUX,法国,2014 - 2026年,博士后研究顾问:Alain Penicaud教授的主要职责包括研究对单层石墨烯的无表面活性剂的无表面活性分散剂的研究,并在水中稳定在水中稳定水的碳纳米管,使用氢氧化离子稳定在水中,使用氢氧化离子静水技术,随后将其供应量化技术。Witwatersrand大学,约翰内斯堡,南非,2010年–2014博士学位顾问:Neil Coville教授化学蒸气的氮掺杂碳纳米管在有机光伏设备中应用。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。Rutgers大学,材料科学与工程系,新泽西州2011-2012合作者:Manish Chhowalla教授化学蒸气的氮化硼掺杂石墨烯材料用于有机光伏设备中。
可回收食品技术对于长期载人航天任务至关重要。本研究将传统和替代太空食品与使用回收二氧化碳的非生物合成 (NBS) 系统进行了比较。以二氧化碳的电化学转化为起点,回顾了不同的碳水化合物合成途径。糖和甘油被视为最终产品。分析了三次往返任务,共有 5 名机组人员,持续 3 年:国际空间站、月球和火星。等效系统质量 (ESM) 技术用于将 NBS 系统与通常储存的预包装食品、人工光培养的螺旋藻、氢氧化细菌 (HOB) 和微生物电合成 (MES) 进行比较。这允许对具有不同特征的系统的发射成本进行比较,包括设备质量、机载体积以及功率和散热要求。使用文献值通过质量和能量平衡估算功耗。NBS 系统的火星任务 ESM 估计在 10-30 吨以内。相比之下,螺旋藻的平均能耗为 65 吨,预包装食品的平均能耗为 35 吨,MES 的平均能耗为 25 吨,HOB 的平均能耗为 11 吨。据估计,NBS 与 HOB 和 MES 一起,是最节能的选择之一。NBS 系统的电能到食品的转换效率预计为 10-21%,单程碳产量高达 ~70%。虽然不建议将 NBS 应用于所有替代方案(即 HOB),但建议将其应用于预包装食品和螺旋藻基准。这些食品生产技术还可以帮助人类度过极端灾难。
抽象动机:由于DNA测序的进步,现在常规地进行了环境微生物群落的分类学分析。确定这些群落在全球生物地球化学周期中的作用需要鉴定其代谢功能,例如氢氧化,还原和碳固定。这些功能可以直接从宏基因组学数据中推断出来,但是在许多环境应用中,MetabarCoding仍然是选择的方法。从元法编码数据及其整合到地球化学循环的粗粒表示中,代谢功能的重建仍然是当今有效的生物信息学问题。结果:我们开发了一条称为Tabigecy的管道,该管道利用分类学官员来预测构成生物地球化学周期的代谢功能。在第一个步骤中,Tabigecy使用该工具Esmecata从输入液位中预测共识蛋白质组。为了优化此过程,我们生成了一个预先计算的数据库,其中包含来自Uniprot的2,404个分类单元的信息。使用BigeCyhmm搜索了共有的蛋白质组织,BigeCyhmm是一个新开发的Python软件包,依靠隐藏的Markov模型来识别参与生物地球化学周期代谢功能的关键酶。然后将代谢功能投射到周期的粗粒表示上。我们将塔博基(Tabigecy)应用于两个盐洞数据集,并通过对样品进行的微生物活性和水力化学测量结果验证了其预测。结果突出了研究微生物群落对地理化学过程的影响的方法。关键字:微生物群落,生物地球化学周期,代谢功能,分类学官员
Final investment decision for the Excelsior Nickel Cobalt Project The Directors of Nickel Industries Limited ( Nickel Industries or the Company ) are pleased to advise that the Company has reached a positive final investment decision ( FID ) with respect to its participation and investment in the Excelsior Nickel Cobalt high pressure acid leach ( HPAL ) Project ( ENC or the Project ) to be constructed within the Indonesia Morowali Industrial Park ( IMIP ) in Central Sulawesi,印度尼西亚。ENC将在三种主要的1类镍产品中,每年产生72,000公吨的含镍等效含量,即混合氢氧化沉淀(MHP),硫酸镍和镍阴极。ENC将是全球首个HPAL,其能力生产三种主要的1类镍产品,所有产品都适用于电动汽车(EV)电池市场。上海体面的投资(集团)有限公司(上海体面),该公司最大的股东和合作伙伴通过其会员不错的资源有限公司(不错的资源),将再次提供“资本支出担保”,从而提供总的建筑成本,将不超过23亿美元(CAPEX保证)。重要的是,与最近宣布的项目和纯粹的“ EPC”成本的进步相比,CAPEX保证代表了高度竞争性的资本强度,因为它包括项目调试和生产量为每年至少60,000公吨的铭牌能力,每年包含的镍含量等效于60,000吨。鉴于最近在镍和电池金属行业宣布的一系列宣布的资本支出超支,因此CAPEX保证的价值不能被夸大。重要的是,CAPEX保证包括尾矿设施,包括行业最佳实践存储和管理(通过干堆尾矿)和集成的硫酸厂(这将通过可再生能源产生该项目的大部分功率需求)。
有关HPAL项目的最新信息和其他Nickel Matte生产更新到电动汽车电池供应链战略框架协议协议(Nickel Industries Limited)的董事(“公司”)很高兴地宣布,在1月18日,在20月18日,在Electric Dectric Tault供应链策略框架中宣布了对电动汽车电池供应链策略框架宣布的“ DAWN HPAL+ Project”的修订条款。预计在黎明HPAL+项目中的年度产量被称为Excelsior Nickel Cobalt项目(“ ENC”或“项目”),是67,000吨包含的镍等效性和上海等体面的体面,将提供“资本支出”的“资本支出”保证,以使总的建筑和调试成本(以前不超过2.3亿美元)(以前是2.3亿美元)(2.3亿美元)。除了产生混合的氢氧化沉淀物(“ MHP”)之外,该项目还能够生产硫酸盐和镍阴极,将其与当前在印度尼西亚建造的HPAL植物不同,并在整个周期内具有明显的工作灵活性。该项目将受益于现有的印度尼西亚莫洛瓦利工业公园基础设施,并得到公司所确定的现有和未来的稍后资源的支持。该公司预计将在该项目中拥有60-70%的股权,而上海体面的拥有30-40%,但是双方都向引入其他战略合作伙伴开放,这可能会导致这些利益稀释。公司及其合作伙伴上海不错,目前正在共同努力,在公司董事会的最终投资决定(“ FID”)之前完成一项可行性研究,预计建筑有望在2023年12月或2024年3月的季度或任何时候开始,两人都同意,并委托在毕业期间以后不再委托工作。
摘要钢铁行业产生的各种废物,该矿石一直是最被回收和回收的对象。Alto-Forno炉渣在回收中得到了很好的定义,但是,动作的矿渣反过来已经发现很难被正确享受,尤其是在其巨大的基本性方面。根据巴西钢铁学院的数据,2011年至2020年之间在巴西的钢铁生产约为3.37亿吨。这平均产生了约4000万吨的Scum Scoria。在当前工作中,提出了在构造中使用范围范围的可行性。由于其化学不稳定性和可降解的物理结构,钢的Scoria被认为是钢制造的残留物和该过程的副产品,因此不建议直接在建造中进行直接使用,因为其降解,膨胀性和低电阻会损害最终产品的稳定性。为此,开发了浮渣治疗分析,其中进行了氢氧化和碳化过程。测试以评估捕获烟雾2的方法,并将氧化物(CAO,MGO)稳定到aciaria的浮渣中,将它们变成碳酸盐,改善其化学和物理稳定性,从而实现这种废物的再利用和可回收性。关键字:钢渣;炉渣的碳酸化;绑架碳;钢废物的回收;生态结构。钢铁制造商简介钢生产过程中产生的炉渣大部分被丢弃。该矿渣主要由氧化钙(CAO)组成,当暴露于环境时,在这种形成的氢氧化钙中与水分反应,CA(OH)2。像CA(OH)2一样,耐药性比CAO本身较低,并且在形成时会导致炉渣膨胀,这种化学现象会导致机械耐药性下降,并使该材料用于构造。因为他们必须丢弃这些