作者对原始稿件中遗漏通讯作者王荣芳的电子邮件地址深表遗憾。王荣芳的电子邮件地址为 rfwang@qust.edu.cn。英国皇家化学学会对这些错误以及由此给作者和读者带来的任何不便深表歉意。
ORCID ID:Kyle A. Alvarado https://orcid.org/0000-0001-6489-2237 Juan B. García Martínez https://orcid.org/0000-0002-8761-7470 David Denkenberger http://orcid.org/0000-0002-6773-6405 摘要:将食物发射到太空的成本非常高。另一种方法是在任务期间使用人工光合作用、温室、非生物食品合成、电细菌和氢氧化细菌 (HOB) 等方法制作食物。本研究比较了预包装食品、人工光微藻和 HOB。每种替代方案的主要因素是其相对质量,因为将有效载荷发射到太空需要高昂的燃料成本。因此,使用美国国家航空航天局开发的等效系统质量 (ESM) 技术对替代方案进行了评估。分析了三项为期 3 年、载有 5 名机组人员的不同任务,包括国际空间站 (ISS)、月球和火星。ESM 的组成部分包括表观质量、散热、功率和加压体积。所有系统选择的电源都是核能。经计算,太空电力与生物质的效率分别为 HOB 和微藻的 18% 和 4.0%。这项研究表明,种植 HOB 是最便宜的替代方案。HOB 的 ESM 平均比预包装食品和微藻低 2.8 倍和 5.5 倍。这项替代食品研究还涉及在全球农业灾难期间为地球提供食物。HOB 的好处包括回收包括 CO 2 在内的废物并产生 O 2 。实际系统将涉及多种食物来源。
疫苗接种是预防或对抗肿瘤以及其他疾病最有效且最具成本效益的方法之一。1,2 有效的肿瘤疫苗应在佐剂的帮助下诱导广泛的体液反应和细胞免疫反应,包括 CD8 + 细胞毒性 T 细胞 (CTL)、CD4 + Th1 或 Th17 细胞反应。3 – 5 然而,最常用的佐剂铝盐(明矾)通常只能引发强烈的抗体反应,且以 Th2 为偏向,6 并且很少有获准用于人体给药的佐剂能够产生足够的细胞免疫反应。7 能够增强体液和细胞免疫反应的新策略仍然是治疗性肿瘤疫苗开发的重点。作为 FDA 批准的公认安全 (GRAS) 颗粒系统,酵母壳壁(β-葡聚糖颗粒)是
超级电容器被广泛视为最有前途的新兴储能装置之一,它将化学能转化为电能并储存起来。二维 (2D) 金属氧化物/氢氧化物 (TMOs/TMHs) 因其高理论比电容、丰富的电化学活性位点以及通过与石墨碳、导电聚合物等结合组装成分级结构而彻底改变了高性能超级电容器的设计。所实现的分级结构不仅可以克服使用单一材料的局限性,而且可以带来性能上的新突破。本文综述了 2D TMOs/TMHs 及其在分级结构中作为超级电容器材料的研究进展,包括超级电容器材料的演变、分级结构的配置、所调控的电性能以及存在的优缺点。最后,提出了与超级电容器材料发展相关的方向和挑战。