分别$ 13,673/t。在印度尼西亚PT Merdeka Tsingshan(“ MTI”)运营的AIM酸工厂的调试活动继续。第一个酸是从火车1产生的,并在三月季度之后交付给了最终用户。酸性植物火车2和氯化物植物的调试预计在第二季度2024年。铜阴极工厂的建设正在进行中,预计在H2 2024中进行调试。PT ESG新能源材料(“ PT ESG”)HPAL工厂的建设正在按计划前进。项目调试是针对2024年末的目标,在不久之后,在混合氢氧化物沉淀物(“ MHP”)中首次生产镍。在本季度结束时,详细的工程设计和长长的铅商品购买基本完成。公司MBMA与PT Bank UOB印度尼西亚(“ UOBI”)完全吸引了8000万美元的单货币定期设施。在本季度,印度尼西亚证券交易所的LQ45和IDX80股权指数中包括MBMA。本季度后,MBMA完成了以下融资活动:O PT ESG进入了高达4.9亿美元的单货币定期设施,
学术出版物(精选) 1. Pei, ZF; Lei, HL; Cheng, L.* ,用于癌症治疗诊断的生物活性无机纳米材料。化学学会评论 2023, 52 (6), 2031-2081。 2. Lei, HL; Li, QG; Li, GQ; Wang, TY; Lv, XJ; Pei, ZF; Gao, X.; Yang, NL; Gong, F.; Yang, YQ; Hou, GH; Chen, MJ; Ji, JS*; Liu, Z.*; Cheng, L.* ,具有 STING 活化双重扩增的锰钼酸盐纳米点用于金属免疫治疗的“循环”治疗。生物活性材料 2024, 31, 53-62。 3. Wang, YJ; Gong, F.*;Han, ZH; Lei, HL; Zhou, YK; Cheng, SN; Yang, XY; Wang, TY; Wang, L.; Yang, NL; Liu, Z.; Cheng, L.*,缺氧氧化钼纳米增敏剂用于超声增强癌症金属免疫治疗。Angewandte Chemie-International Edition 2023, 62, e202215467 4. Wang, L.; Zhang, BR; Yang, XT; Guo, ST; Waterhouse, GIN; Song, GR; Guan, SY*; Liu, A. H*.; Cheng, L.*;Zhou, SY,通过阿托伐他汀-铁蛋白Gd层状双氢氧化物有针对性地缓解缺血性中风再灌注。生物活性材料 2023, 20, 126-136。 5. Wang, L.;Mao, Z.;Wu, J.;Cui, XL;Wang, YJ;Yang, NL;Ge, J.; Lei, HL; Han, ZH; Tang, W.; Guan, SY; Cheng, L.*,设计层状双氢氧化物基声催化剂以增强声动力免疫治疗。纳米今日 2023, 49。6. Cheng, SN; Chen, L.; Gong, F.; Yang, XY; Han, ZH; Wang, YJ; Ge, J.; Gao, X.; Li, YT; Zhong, XY; Wang, L.; Lei, HL; Zhou, XZ; Zhang, ZL*; Cheng, L.*,具有炎症微环境调节功能的 PtCu 纳米声敏剂可增强声动力细菌消除和组织修复。先进功能材料 2023, 33, 2212489 7. Wang, ZK; Zhang, P.; Yin, CY; Li, YQ; Liao, ZY; Yang, CH; Liu, H.; Wang, WY; Fan, CD*; Sun, DD*; Cheng, L.*,抗生素衍生的碳纳米点修饰水凝胶通过生物膜损伤增强活性氧的抗感染作用。先进功能材料 2023, 33, 2300341
防止阳极和阴极接触,同时允许离子通过。5,8 氢氧化锂 (LiOH) 和碳酸盐 (Li 2 CO 3 ) 在锂离子电池阴极材料的生产中起着至关重要的作用。虽然两种锂化合物都可以使用,但氢氧化物形式具有一些优势。氢氧化锂是长续航里程汽车电池中使用的高镍阴极材料的首选,因为它具有更高的填充密度、更好的结晶度、结构纯度,并且可以在较低的合成温度下使用。9 氢氧化锂可以从盐水和矿石中提取。10 从锂辉石等矿石中提取需要多个步骤,首先要将原料矿物粉碎和研磨。由于 α-锂辉石具有非常强的化学抗性,因此必须通过在 1100°C 的回转窑中加热将其转化为热力学上不太稳定的 β-锂辉石。该步骤之后,通常会在 250°C 下用浓硫酸 (H 2 SO 4 ) 焙烧 b-锂辉石,生成硫酸锂 (Li 2 SO 4 )。10 根据所用的工业工艺,可能需要进一步的步骤,这些步骤可能在细节上有所不同,但通常包括浸出先前的
摘要:高效的基因传递系统对于植物基因工程至关重要。传统的传递方法已被广泛使用,例如农杆菌介导的转化、聚乙二醇 (PEG) 介导的传递、基因枪轰击和病毒转染。然而,这些技术的基因型依赖性和其他缺点限制了基因工程的应用,特别是许多农作物的基因组编辑。迫切需要开发新的基因传递载体或方法。最近,纳米材料如介孔二氧化硅颗粒 (MSN)、AuNP、碳纳米管 (CNT) 和层状双氢氧化物 (LDH) 已成为将基因组工程工具 (DNA、RNA、蛋白质和 RNP) 高效地以物种独立的方式传递给植物的有前途的载体。已经报道了一些令人兴奋的结果,例如成功将货物基因传递到植物中以及产生基因组稳定的转基因棉花和玉米植物,这为植物基因组工程提供了一些新的常规方法。因此,本文综述了纳米材料在植物遗传转化中的应用进展,并讨论了不同方法的优势和局限性,强调了纳米材料在植物基因组编辑中的优势和潜在的广泛应用,为纳米材料在植物基因工程和作物育种中的应用提供指导。
直接空气碳作为一种负排放技术,对于降低大气中的二氧化碳浓度至关重要。伴随着这项技术的开发和应用,与直接空气碳捕获相关的高能源需求和大量资本成本一直存在。本文旨在分析利用氢氧化物燃料电池的技术和经济可行性,以作为直接空气碳捕获的过程的电力和高级热量的来源。至关重要的是,使用可再生的氢产量的可再生形式是可持续的,因此,对50 MW固体氧化物燃料电池进行了建模,可再生的氢供应50 mW固体氧化物燃料电池,并与直接的空气碳捕获过程集成,从而使系统能够直接从空气中直接删除270 kt/年的碳二氧化碳。该系统的当前捕获成本与可再生氢的价格相差很大,估计范围为314 - 1,505英镑,每吨二氧化碳捕获。随着可再生氢的成本在将来下降,这种过程可能成为天然气饲料直接空气捕获的可行替代品,预计每吨的捕获成本为2050英镑。
迄今为止,尚无证据表明锂辉石有商业化生产前景。锂化学品分两个阶段从硬岩源中生产出来:i. 通过浮选和/或重介质分离将锂辉石选出 5 – 6% 的 Li 2 O 精矿或将透锂长石选出 3 – 4%。锂云母通过浮选进行选矿,锂辉石通过磁选进行选矿。ii. 在接下来的湿法冶金步骤中,精矿在 ~ 1000 – 1100 摄氏度下煅烧以产生更具反应性的晶体形式,然后在高温下用浓硫酸浸出,得到硫酸锂。通过添加苏打灰(可去除镁杂质)可将其转化为碳酸盐,然后通过添加石灰将其转化为氢氧化物(通常是首选方案)。锂云母和锌云母含有氟,在煅烧过程中会被释放,因此需要使用洗涤器来收集氟,防止其逸出到大气中。Lepidico 是一家在纳米比亚拥有锂矿开采前景的澳大利亚公司,该公司开发了一种提炼锂云母的程序,其中包括泡沫浮选和磁选,但不需要煅烧阶段。
• 多金属结核在克拉里昂-克利珀顿断裂带、中印度洋盆地和西太平洋很常见。 3 多金属结核主要含有锰、铁、硅酸盐和氢氧化物。据国际海底管理局称,这些结核的开采因其镍、铜、钴、锰和稀土元素 (REE) 含量而受到关注,以满足对这些矿物日益增长的需求。此外,结核中还含有微量钼。 4 • 西南印度洋海脊、中印度洋海脊和中大西洋海脊正在勘探多金属硫化物。 5 多金属硫化物含有大量的铜、锌、铅、铁、银和金。 • 富钴结壳在许多情况下出现在各国的专属经济区 (EEZ) 内,目前正在西太平洋进行勘探。 6 钴结壳在矿物成分上与多金属结核大体相似,但钴结壳因钴含量较高、铂和稀土元素 (REE) 含量较高、镍和锰含量较高而受到人们的关注。因此,锰、铜、钴、镍、钼、稀土元素、锌、银、金和铂是深海采矿矿物,由于需求不断增长而受到人们的关注最多。这些矿物将在第 1.2 节中进一步讨论。
摘要:NCA电池占市场份额的8%,文献缺乏回收研究和通往具有成本效益的回收过程的途径。目前的研究旨在开发NCA圆柱电池的湿法铝回收过程。细胞被排出,然后在浸出之前进行身体治疗。评估了三种不同的酸:H 2 SO 4,H 3 PO 4和柠檬酸。由于存在Al箔,因此不需要减少剂,从而降低了浸出成本。柠檬酸代表了一种更好的成本效益的选择,但固体 - 液体分离代表了该过程的缺点。H 2 SO 4 SO 4在90°C下浸出90分钟,固体 - 液体比为1/5和2.0 mol/l,而无需Cu浸出,Al通过沉淀分离,然后使用Cyanex 272进行溶剂提取,以进行CO分离。ni作为氢氧化物获得,LI结晶为硫酸盐。质量平衡表明,在湿法铝处理中,约有92%的LI,80%和85%的CO可以回收。纯度> 95%的产品可用于电池和不锈钢生产。该过程有可能具有低CO 2足迹,未来的研究将探索它。
目录 页码 执行摘要 4 关于作者 5 简介 5 • 本评论的重点 • 固态 / 半固态锂离子电池组件 • 当今的固态 / 半固态锂离子电池市场 • (预计)市场发布 – 固态 / 半固态锂离子电池电动汽车 基于人工智能的商业相关专利识别 12 • 自 2019 年以来的商业相关专利系列 / 实用新型数量 技术决策树 30 • 固体电解质 – 类型 – 已推出或即将推出市场 • 固体电解质 – 类型 – 根据专利申请 • 固体电解质 – 概念 • 固体电解质 – 不含磷的氧化物 – (可能)结晶 • 固体电解质 – 磷酸盐 / 含 P 的氧化物 – (可能)结晶 • 固体电解质 – 氧化物 / 磷酸盐 – (可能)玻璃 • 固体电解质 – 氢氧化物 • 固体电解质 –硫化物•固体电解质 – 减缓硫化氢排放•固体电解质 – 聚合物•固体电解质 – 卤化物 / 氧卤化物•薄膜电池用固体电解质•固体电解质 – 硼烷•锂(钠)盐•增塑剂•液体电解质组分 / 液体添加剂•固体电解质添加剂 / 不含锂的支撑和填充材料•固体电解质粘合剂•负极活性材料•正极活性材料•负极添加剂•正极添加剂•负极粘合剂•正极粘合剂
• NiVolt has Demonstrated Ability to Produce High Quality Nickel Products for the Battery Industry, Achieving Greater Than 97% Nickel and Cobalt Leach Recoveries • Successful Production of Mixed Hydroxide Precipitate Containing Over 45% Nickel Plus Cobalt with Low Impurities for Potential End-User Evaluation • NiVolt is Advancing a Feasibility Study and Site Selection for Downstream Processing Infrastructure in Quebec TORONTO—January 10, 2024年 - 一家私募股权公司Kinterra Capital(“ Kinterra”),该公司投资并开发了能源过渡所必需的关键关键矿产资产和战略基础设施,今天宣布投资组合公司Nivolt Technologies Inc.(“ Nivolt”)已取得了巨大的进步,该目标朝着其提供镍和配音链产品的目标。nivolt已成功生产了混合的氢氧化物沉淀(“ MHP”),并正在推进加拿大魁北克省的水态铝制设施的可行性研究。Nivolt设施将用于电动汽车(“ EV”)电池行业的镍浓缩物和硫酸盐。nivolt在水透明术测试工作上取得了重大进展,以优化过程条件并评估Kinterra在魁北克和澳大利亚的镍项目中的镍浓缩材料,以及在试点工厂运动之前的第三方集中精力。亮点包括: