放眼全球碳中和趋势,三菱重工 (MHI) 的主打产品 GTCC 发电厂和蒸汽发电厂也迫切需要实现碳中和。在这样的环境下,高砂氢能园区正在我们开发和制造氢气涡轮机的高砂机械厂建设,这是世界上第一个从氢气生产到发电技术的综合验证设施。本报告介绍了其建设现状和即将介绍的氢气生产技术。此外,高砂氢能园区计划陆续扩建相关设施,目标是到 2025 年实现 30% 混燃大型燃气轮机产品和 100% 氢燃中小型燃气轮机产品的商业化。
来自图卢兹三重唱学院的年轻人将首次在凯旋门下演唱歌曲《En terres étrangères》,以此向在外部行动中牺牲的士兵致敬。
L 屋顶路缘,平顶或斜顶(拆下运输) L 服务平台(符合 OSHA 标准) L 水平型号的百叶窗式集气室 L 120 伏 GFI 插座和照明 L TEFC 风扇电机,高效和汽车规格选项 L 电机缺相保护 L 电机皮带护罩 L 振动隔离(外部) L 排气循环(大多数型号) L 蒸发冷却包 L 带冷冻水或 DX 线圈的冷却部分 L 带热水、蒸汽或电线圈的加热部分 L 100% OA 型号的空间温度控制 L DDC 微处理器控制 L 温和天气状态 L 燃烧器警报喇叭 L 清除计时器(30 秒) L 三相电源监视器 L 烟雾探测器 L Magnahelic 和 Photohelic 仪表 L FM 或 IRI 气体歧管 L 天然气转丙烷(LP) 转换开关 L 高气压调节器 L 低气压燃烧器组件(无需额外费用)
氢是一种清洁能源载体,也是储存能量的有效媒介。由于对环境的影响小且特性可靠,氢通常被视为环保的理想能源载体,可以从许多可大量获取的来源生产,例如天然气、水和电、生物质、沼气等。氢是天然气的可持续替代品。从天然气中分离出来后,该过程中释放的二氧化碳被捕获并储存在地下或用于化学品制造。这就产生了所谓的蓝氢。另一种生产氢的方法是通过电解将水分子 (H2O) 分离成氢和氧,由可再生能源提供动力。氨(一个氮原子与三个氢原子结合)是氢的有效能量载体,相比之下具有显著的能量密度。按重量计算,氨的能量几乎是液态氢的两倍。就能量密度而言,液态氨含有 15.6 MJ/L,比液态氢(低温下为 9.1 MJ/L)高出 70%。
本文分析了是否可以将氨视为经济高效且技术上合适的解决方案,可以应对未来脱碳能源系统中大规模,长期,可运输能量存储的挑战。它比较了所有类型的当前可用的储能技术,并表明氨和氢是两种最有前途的解决方案,除了在低碳经济中提供长期存储的目标外,还可以通过无碳工艺产生。本文认为,作为氢的能量向量,氨比从经济,环境和技术角度来看纯氢。然后,它分析了可用的氨发电技术,确定零碳氨的经济上有意义的条件,并简要介绍了这种产量的政策先决条件,以使投资者有吸引力。鉴于该行业的现状,如果没有足够的碳税和/或替代激励措施等政策支持,则不太可能发生大规模的绿色氨。在没有此类政策的情况下,在具有极低成本可再生能源生产或显着盈余产生的能源的地区,绿色氨可能只能在能源系统中取得小规模的进步。
1 研究背景与目的· ... ·· ... ·· ... 20 4.4 氨的风险 ·· ... 27 5.3 氨气地上储存设施 ······································ 28 5.4 氨气作为汽车燃料 ··························································· 33 5.5 与船舶安全特性的比较 ···
免责声明 本出版物及其中的材料均按“原样”提供。IRENA 已采取一切合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA 及其任何官员、代理、数据或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对于使用本出版物或此处材料的任何后果,他们不承担任何责任或义务。此处包含的信息不一定代表 IRENA 所有成员的观点。提及特定公司或某些项目或产品并不意味着 IRENA 认可或推荐它们优于未提及的其他类似性质的公司或项目或产品。此处使用的名称和材料的呈现方式并不意味着 IRENA 对任何地区、国家、领土、城市或地区或其当局的法律地位,或对边界或边界的划定发表任何意见。
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
可再生氢出口最初可能以氨的形式运输。根据全球宣布的出口导向型项目,由于缺乏处理和运输大量液态氢的合适基础设施,氨似乎至少在 2030 年之前是海上运输氢气的首选载体。鉴于氢气成本预计会下降且海运氨的成本相对较低,到本世纪末,阿曼的可再生氨供应成本可能低至 450 美元/吨(运输距离为 10,000 公里)。这将使可再生氨的成本与 2010-2020 年期间氨市场价格的高端相当,并远低于 2022 年由于天然气价格上涨而全球经历的超过 1,000 美元/吨的创纪录水平。