摘要。分布式燃料电池拖拉机是一种新型的动力拖拉机。传输系统和控制策略参数会影响整个机器的能量利用效率。目前在这一领域没有研究。为了解决分布式双运动式氢燃料电池拖拉机的整个机器的低能利用问题,提出了一种合作优化方法,基于粒子群优化(PSO)算法,用于用于传输系统的参数和传输系统和能量的Dual Dual Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motor-Motiven viren燃料电池燃料电池燃料燃料燃料燃料电池tractor。根据拖拉机动力学分析和等效氢消耗理论,建立了燃料电池拖拉机传输参数等效氢消耗模型,车轮端传输比以及氢燃料电池工作能力的上和下阈值作为控制变量的最小氢消耗是基于MAT的最小氢化量,并将其作为模拟方法,并将其作为模拟方法。结果表明,在耕作条件下,与基于规则的控制策略相比,燃料电池拖拉机传输系统和控制策略参数的提议的协作优化方法可以合理地控制燃料电池和电源电池的运行状态,确保燃料电池在高效范围内运行,并在燃料电池系统的总体范围内运行,并在燃料电池系统的总体范围内效力(SOIS),并在合理的范围内控制电池。拖拉机等效氢消耗量减少了7.84%。
*氢存储氢存储对氢燃料电池市场的生长至关重要。燃料电池的技术增长与氢存储解决方案的增长之间存在固有的联系,尤其是在通往大众市场应用的途径中。此类技术包括:•类型3,4型和5型气态存储以及冷冻压缩的,液体氢和固态存储(第11页)•压力调节转移到一致的700 bar,燃油供应流量增加到5 kg / min及以后(第12页)< / div> < / div>
氢能技术和飞机项目已在世界各地启动。预计次区域和区域氢燃料电池电动飞机将于 2030 年投入使用,液氢燃气涡轮飞机将于 2030 年代中期投入使用。为了在这个新市场中占据强势地位,英国航空航天业需要紧急采取行动,投资研发并培养具有所需技能的劳动力。熟练的劳动力和强大的研究能力吸引海外公司落户英国,巩固生产和高价值工作岗位。
Vernon,2024年1月29日 - Turbotech和Safran成功地测试了轻型航空市场的第一个氢燃料式燃气轮机发动机。- 在法国弗农的Arianegroup设施的测试是Beauthyfuel项目的一部分,旨在探索轻型飞机的氢推进解决方案。Beauthyfuel得到了法国民航局(DGAC)作为法国后杂种刺激计划的一部分的支持,由Turbotech和Elixir飞机与Safran,Air Liquide和Daher合作,由Turbotech和Elixir飞机领导。- 该项目利用Arianegroup在Ariane Rocket上使用氢推进的数十年经验。1月11日,Turbotech和Safran成功完成了具有超高性能再生周期的氢气燃气燃气轮机发动机的首次测试。通过Arianegroup的资源和数十年的专业知识,在法国的Vernon测试设施中为空间应用准备和进行测试,使该测试成为可能。该初步试验是使用以气态形式存储的氢燃料进行的。在第二阶段,今年晚些时候,发动机将与液体液体开发的低温液体存储系统耦合,以证明推进系统的端到端集成,该系统在完整飞机上复制所有功能。“使用TurboTech TP-R90再生涡轮螺旋桨发动机进行的第一个实验表明,我们可以转换先前已证明的内燃技术,以创建用于通用航空的工作零碳解决方案。Arianegroup在氢检测方面的专业知识在这一关键第一步的及时成功中是决定性的。”“当我们转移到液态氢燃料时,目的是提供具有实际商业应用的高能量密度推进系统。我们的解决方案将很容易在轻型飞机上进行改装,并且在其他市场细分市场中可能具有潜力。” “该项目的第一阶段已经超出了我们的期望,” Safran副总裁Pierre-Alain Lambert说“我们的目标是验证各个阶段的发动机和燃油控制系统的行为,从发动机启动到全油门以及失败时的策略。对于Safran来说,这种小规模的调查确实很有价值,因为我们可以快速而细腻。它补充了我们的其他大规模计划,旨在消除航空运输氢推进的障碍,例如我们与CFM International 1合作的技术演示,作为空中客车公司Zeroe计划的一部分,在Clean Aviation的支持下。
ARK Energy H2可再生氢植物昆士兰州政府已承诺在汤斯维尔的Sun Metals炼油厂建立可再生氢生产和加油设施,以支持ARK能源。将通过电解生产氢,并用于在太阳金属机队中最多五个氢燃料电池电动卡车以及整个炼油厂操作中的其他应用。该项目将展示本地生产的氢的应用,并促进本地供应链中的能力建设。ARK Energy也成功地获得了竞技场资金以支持该项目。
简介:能源问题:基本方面、范围、时间框架、挑战理论方面:电化学(还原/氧化、离子电导率、固体电解质界面)、能带图(PN 结、LED、二极管)、材料热行为(热导率、多孔材料、微电子)材料技术方面:电池和氢燃料电池(电极材料、表面改性、存储……)。光伏(材料、结构、串联、抗反射涂层……)、材料热行为(发射率、窗户涂层……)。低功耗计算和功率转换。(LED)照明效率。
在供应方面,发电成本将会增加,以实现完全脱碳的电力供应(有关进一步讨论,请参阅本报告第 4 节)。将开发千兆瓦的新可再生能源发电,能源储存资源将在平衡供需方面发挥越来越重要的作用。可能需要提供清洁、稳定发电的新技术(例如氢燃烧涡轮机或氢燃料电池),以确保 2040 年 100% 清洁电力系统的可靠性。输电和配电系统将需要扩展以适应新的负荷增长并将新发电连接到电网。