具有高效率的操作和清洁能量过渡。[2]与化学成分一起,分子间相互作用直接通过将分子堆积管理到晶体中来确定有机固体的功能。与单个分子[3a,b]相比,这种能量的增加导致晶体的电子结构发生变化,这打开了调整所得有机晶体(OC)的光学,电子和传输特性的可能性。然而,这种强大的间隔相互作用可确保OC的结构元素之间有效的电荷转移,进而可以通过淬火过程降低光发射性能。[3F-K]相反,通过引入氢键[3C-E]来降低该能量的降低,可保留单个分子及其光发射特性的电子特征,并扩大了分子堆积的方式,并提供了OC生长在任意表面上的控制。反过来,这些对于轻松产生有效的连贯和不连贯的光源至关重要。[1C]
器官或组织。某些子类,例如HAQP0、1、2、4和5,可以选择性地运输水,同时拒绝其他离子[6-12],这可以归因于独特的窄选择性滤波器,仅允许单个水分子易位。出现到通道入口时,水分子可以自动调整其自适应结合和方向,然后通过通道产生连续的水线/簇。此过程将伴随着几个小溶质的易位。,例如,HAQP3运输尿素,甘油和水分子。此外,在HAQP3中,Ni 2+与组氨酸241的结合可以带来与人类肺部疾病有关的Ni 2+敏感性[17]。
无需预活化即可对复杂分子进行功能化,从而可以在合成序列的后期引入功能团。[1] 直接 C @ H 硼化尤其令人感兴趣,因为硼功能团可以通过各种各样的转化进行进一步修饰,包括 Suzuki 偶联反应、胺化、羟基化和卤化,从而提供结构和功能的分子复杂性。[2] 对于该应用至关重要的是可以控制反应的选择性,这对于空间和电子失活的 C @ H 键尤其具有挑战性。最近,已经探索了利用底物和金属配合物配体之间的超分子相互作用来控制选择性,[3] 并且这导致了用于电子(未)活化底物的选择性间位或对位 C @ H 硼化的催化剂。 [4] 然而,邻位选择性 C @ H 硼化仅报道用于电子活化芳烃,例如胺、[5] 醇、[6] 或硫醚取代的 [7] 芳烃。二级芳香酰胺是药物、农用化学品和精细化学品中非常常见的结构单元,[8] 因此,此类化合物的邻位选择性 C @ H 硼化将非常有趣。然而,此类化合物的直接邻位 -C @ H 硼化极具挑战性。对于常见的铱-
摘要:有机分子晶体的长寿命室温磷光引起了广泛关注。持久发光取决于分子成分的电子特性,主要是 p 共轭给体-受体 (DA) 发色团,以及它们的分子堆积。本文开发了一种策略,通过设计两种异构分子荧光粉,结合并结合 D 和 A 单元之间的 s 共轭桥和用于 H 键导向超分子自组装的结构导向单元。计算强调了 s 共轭桥的两个自由度对发色团光学性质的关键作用。分子晶体的 RTP 量子产率高达 20%,寿命高达 520 毫秒。高效磷光材料的晶体结构证实了发射体存在前所未有的良好组织,形成由分子间 H 键稳定的 2D 矩形柱状超分子结构。
我们通过在非微扰水平上引入量子非谐性来研究高压冰的结构和热力学性质。量子涨落使 VIII 相(具有不对称 H 键)和 X 相(具有对称 H 键)之间的相变临界压力从 0K 时的经典值 116 GPa 降低了 65 GPa。此外,量子效应使其在很宽的温度范围内(0K-300K)不受温度影响,这与通过振动光谱获得的实验估计值一致,与经典近似中发现的强烈温度依赖性形成鲜明对比。状态方程显示出与实验证据一致的转变指纹。此外,我们证明,在我们的方法中,VII 相中的质子无序对 X 相的发生影响可以忽略不计。最后,我们高精度地再现了由于氢到氘的取代而导致的 10 GPa 同位素偏移。
氢键在水的异常行为中起着至关重要的作用。虽然已经对单个H键的特性进行了广泛的研究,但所得的H键网络的拓扑特征仍然较少探索。在这项研究中,我们采用分子动力学模拟来检查各种水界面,与大量水相比,与表面平行的H键相比,发现了增加的H键。为了量化这些网络的拓扑结构,我们引入了网络渗透和维度的新型估计值。我们的发现表明,H键的比例升高,平行于界面显着影响网络连接,从而减少了水层的数量和距网络实现完全连通性的表面的距离。因此,界面的H键网络表现出的“二维”特征比当地水密度高以及水水H键和水面相互作用之间的竞争更多的是大量水的“二维”特征。
PDMS Poly(dimethylsiloxane) P(DMS- co -HMS) Poly(dimethylsiloxane- co -methylhydrosiloxane) PE Polyethylene PEG Poly(ethylene glycol) PMMA Poly(methyl methacrylate) PP Polypropylene PPG Poly(propylene glycol) PPM Post-polymerization modification PPO Poly(propylene氧化物)PTMEG聚(四甲基乙醚乙醚)ptmeg-u up-u up-u up-u up-upyechelic聚(四甲基二甲基乙醚)PTMEG-u甘油PTMEG-ptmeg-ptmeg ptmeg ptmeg ptmeg ptmeg ptmeg ptmeg氧化物)聚(四甲基甲基乙醚) acrylate SET-LRP Single electron transfer living electron polymerization SPM Supramolecular polymer materials TEG Tetraethyleneglycol T g Glass transition temperature TMS Trimethylsilyl TPE Thermoplastic elastomer UPy 2-Ureido-4-pyrimidinone (UP) 3 T UPy-terminated three-arm siloxane oligomers UPy-MA UPy-methacrylate
基于CO 2的二嵌段共聚物,聚(氧化氧化物-B-甲氧烯碳酸苯甲酸乙烯)(PEO-B -PCHC),通过使用PEO用作宏观链转移剂,通过环开共聚物(ROCOP)进行了调节。这些二嵌段共聚物的全面特征是傅里叶变换红外(FTIR)和核磁共振(NMR)光谱,差异扫描量热法(DSC)和热驱膜法分析(TGA),以获取对其化学结构和热特性的见解。通过酚类羟基(OH)组与PEO和C的乙醚单位与PEO和C - O基于FTIR分析的PCHC单位,通过竞争性氢键相互作用与酚类树脂混合后,通过竞争性氢键相互作用而诱导了微相分离。 小角度X射线散射(SAXS)分析还提供了在180℃热聚合后,由于反应诱导的微体分离机制,在180℃的热聚合后,特定酚类/PEO-B -PCHC混合物的自组装结构。 在350°C处取出Peo-B -PCHC二嵌段共聚物模板后,基于SAXS,透射电子显微镜(TEM)和氮气吸附/供应/吸收/呼吸分析,获得了中孔酚醛树脂,包括圆柱,球形和蠕虫样结构。 此外,在N 2大气下,在700℃的介孔酚类树脂中进一步从介孔碳中进一步选择。 这些碳化的介孔材料表现出令人印象深刻的特征,例如高表面积,它们表现出有效的CO 2捕获功能(4.5 mmol g -1在273 K时)。通过竞争性氢键相互作用而诱导了微相分离。小角度X射线散射(SAXS)分析还提供了在180℃热聚合后,由于反应诱导的微体分离机制,在180℃的热聚合后,特定酚类/PEO-B -PCHC混合物的自组装结构。在350°C处取出Peo-B -PCHC二嵌段共聚物模板后,基于SAXS,透射电子显微镜(TEM)和氮气吸附/供应/吸收/呼吸分析,获得了中孔酚醛树脂,包括圆柱,球形和蠕虫样结构。此外,在N 2大气下,在700℃的介孔酚类树脂中进一步从介孔碳中进一步选择。这些碳化的介孔材料表现出令人印象深刻的特征,例如高表面积,它们表现出有效的CO 2捕获功能(4.5 mmol g -1在273 K时)。随后可以在Rocop再次使用捕获的CO 2来合成基于CO 2的共聚物,与循环经济原理保持一致。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2023年12月13日发布。 https://doi.org/10.1101/2023.12.13.571396 doi:Biorxiv Preprint
©2023作者。本文是根据Creative Commons归因4.0国际许可证的许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您适当地归功于原始作者和来源,就可以提供与Creative Commons许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。