摘要:共振辅助氢键 (RAHB) 是一种分子内接触,其特点是能量特别高。这一事实通常归因于系统中 π 电子的离域。在本文中,我们通过利用分子原子量子理论 (QTAIM) 和相互作用量子原子 (IQA) 分析,考察吸电子和给电子基团(即 − F 、 − Cl 、 − Br 、 − CF 3 、 − N(CH 3 ) 2 、 − OCH 3 、 − NHCOCH 3)对丙二醛中 RAHB 强度的影响,从而评估了这一论点。我们表明,所研究的取代基对所研究的 RAHB 强度的影响在很大程度上取决于其在 π 骨架中的位置。我们还研究了 RAHB 的形成能与波函数分析的 IQA 方法定义的氢键相互作用能之间的关系。我们证明了这些取代基对形成能和相互作用能有不同的影响,这使人们对使用不同参数作为 RAHB 形成能指标产生了怀疑。最后,我们还证明了能量密度如何能够以较低的计算成本估计这些重要相互作用的 IQA 相互作用能,从而估计 HB 强度。我们期望本文报告的结果将为评估 RAHB 和其他分子内相互作用的能量学提供有价值的理解。
交叉率,k hop = 1 2 | ˙ q | e − βU ( q ∗ ) R q ∗ ∞ dqe − βU ( q ) ,其中 q 是公式单位的偶极矩,
氢键在水的异常行为中起着至关重要的作用。虽然已经对单个H键的特性进行了广泛的研究,但所得的H键网络的拓扑特征仍然较少探索。在这项研究中,我们采用分子动力学模拟来检查各种水界面,与大量水相比,与表面平行的H键相比,发现了增加的H键。为了量化这些网络的拓扑结构,我们引入了网络渗透和维度的新型估计值。我们的发现表明,H键的比例升高,平行于界面显着影响网络连接,从而减少了水层的数量和距网络实现完全连通性的表面的距离。因此,界面的H键网络表现出的“二维”特征比当地水密度高以及水水H键和水面相互作用之间的竞争更多的是大量水的“二维”特征。
a请参阅clogpalk.param.2.0(参数)和clogpalk.vbind.2.0(智能定义的向量绑定)[48]的补充信息中的文本文件,以通过Slope参数在Smarts中获得与非溶剂原子的数量相乘。b从Q(2.7;表2)用于二甲基苯胺从Q(3.8)中使用MSA(120Å2)和六烷基/水logP(-0.04)[59]的Q(1)计算为苯胺的Q(3.8)[59]。c从表1。D值未归一化,因为HBD子结构中的氢原子数量未归一化。e值适用于2-(3-苯佐羟丙基)-Imidazole
冰结构的关键在于,在某种条件下,氢键是否以可控的方式集体断裂,即一系列氢键沿一个方向断裂,例如沿图 1 所示的虚线。如果氢键从中心沿六个方向集体断裂,则预计冰将断裂成六块,每块与中心成 60 度角。从机械工程的角度来看,冰应该从任何一点开始具有各向异性。冰的这种机械特性尚未被研究过。在这篇简短的报告中,我们证明,薄冰在接触点受到冲击/撞击时确实会断裂。冰以预期的角度断裂成六块。这可能是第一个例子直接观察到氢键沿预期方向以可控的方式集体断裂。
基于CO 2的二嵌段共聚物,聚(氧化氧化物-B-甲氧烯碳酸苯甲酸乙烯)(PEO-B -PCHC),通过使用PEO用作宏观链转移剂,通过环开共聚物(ROCOP)进行了调节。这些二嵌段共聚物的全面特征是傅里叶变换红外(FTIR)和核磁共振(NMR)光谱,差异扫描量热法(DSC)和热驱膜法分析(TGA),以获取对其化学结构和热特性的见解。通过酚类羟基(OH)组与PEO和C的乙醚单位与PEO和C - O基于FTIR分析的PCHC单位,通过竞争性氢键相互作用与酚类树脂混合后,通过竞争性氢键相互作用而诱导了微相分离。 小角度X射线散射(SAXS)分析还提供了在180℃热聚合后,由于反应诱导的微体分离机制,在180℃的热聚合后,特定酚类/PEO-B -PCHC混合物的自组装结构。 在350°C处取出Peo-B -PCHC二嵌段共聚物模板后,基于SAXS,透射电子显微镜(TEM)和氮气吸附/供应/吸收/呼吸分析,获得了中孔酚醛树脂,包括圆柱,球形和蠕虫样结构。 此外,在N 2大气下,在700℃的介孔酚类树脂中进一步从介孔碳中进一步选择。 这些碳化的介孔材料表现出令人印象深刻的特征,例如高表面积,它们表现出有效的CO 2捕获功能(4.5 mmol g -1在273 K时)。通过竞争性氢键相互作用而诱导了微相分离。小角度X射线散射(SAXS)分析还提供了在180℃热聚合后,由于反应诱导的微体分离机制,在180℃的热聚合后,特定酚类/PEO-B -PCHC混合物的自组装结构。在350°C处取出Peo-B -PCHC二嵌段共聚物模板后,基于SAXS,透射电子显微镜(TEM)和氮气吸附/供应/吸收/呼吸分析,获得了中孔酚醛树脂,包括圆柱,球形和蠕虫样结构。此外,在N 2大气下,在700℃的介孔酚类树脂中进一步从介孔碳中进一步选择。这些碳化的介孔材料表现出令人印象深刻的特征,例如高表面积,它们表现出有效的CO 2捕获功能(4.5 mmol g -1在273 K时)。随后可以在Rocop再次使用捕获的CO 2来合成基于CO 2的共聚物,与循环经济原理保持一致。
图 4. a) PeLED 的能级图。b) 原始器件和 DPPA 改性器件的归一化 EL 光谱。c) 电流密度-电压 (JV) 曲线和亮度-电压 (LV) 曲线。d) EQE-电流密度 (EQE-J) 曲线。e) 30 个器件的统计最大 EQE 值。f) 原始器件和 DPPA 改性器件的操作稳定性。
摘要:有机分子晶体的长寿命室温磷光引起了广泛关注。持久发光取决于分子成分的电子特性,主要是 p 共轭给体-受体 (DA) 发色团,以及它们的分子堆积。本文开发了一种策略,通过设计两种异构分子荧光粉,结合并结合 D 和 A 单元之间的 s 共轭桥和用于 H 键导向超分子自组装的结构导向单元。计算强调了 s 共轭桥的两个自由度对发色团光学性质的关键作用。分子晶体的 RTP 量子产率高达 20%,寿命高达 520 毫秒。高效磷光材料的晶体结构证实了发射体存在前所未有的良好组织,形成由分子间 H 键稳定的 2D 矩形柱状超分子结构。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。该版本的版权持有人于2023年12月13日发布。 https://doi.org/10.1101/2023.12.13.571396 doi:Biorxiv Preprint
单畴(永久取向的“单晶”)液晶驱动通常是获得人造软材料类似肌肉驱动的关键方案。[1–3] 然而,由于聚合物弹性体的各向同性,这种物理上偏置的分子结构的需求给经典的合成聚合物弹性体带来了技术挑战。1991 年,Finkelmann 等人 [8] 引入了一种两阶段氢化硅烷化方法,并报道了第一个成功的具有独立驱动功能的“向列液晶单晶弹性体”。在这种方法中,其本质一直是随后二十年制造单畴液晶驱动的首选方案,对轻度交联的凝胶施加单轴机械延伸,以建立内部单轴取向场,然后进行进一步(第二阶段)固化以永久固定该取向。然而,这种方法在实践中非常困难,因为半固化凝胶本身具有机械脆弱性,需要充分拉伸才能实现取向。这降低了液晶元件在不断扩展的变形和驱动应用中的可用性。为了实现更复杂的液晶取向模式并规避分阶段固化问题,人们开发了其他基于外部场的技术,特别是表面取向 [9–12] 和动态键交换。[13–20] 基板的多样化像素定义表面使驱动模式的扩展成为可能,而不仅仅是简单的收缩-伸展。尽管进行了功能化,但材料的规模仍然受到特定基板的限制,并且表面穿透液晶元件本体的深度有限,使得该方法在技术上不足以进行大规模制造。因此,对于通用且灵活的液晶元件制造,机械拉伸仍然是生产多功能功能形式的单畴液晶元件的最简单策略。例如,鉴于聚合物纤维加工方法的成熟,这在编织纤维中尤为突出。人们希望有除氢化硅烷化之外的新化学方法,以便进行稳健的反应和方便的机械排列方式。近年来,二丙烯酸酯反应性液晶原(如 RM257 和 RM82)的商业化供应已成为 LCE 领域的强大推动力,考虑到涉及二丙烯酸酯的一系列良性反应,它提供了一种令人满意的替代方案。特别是,