图1。(a)人类SEH(PDB ID:3ANS)的X射线结构的亚基A,具有非共价外消旋的4-氰基N-(Trans-2-苯基甲基丙烷基)苯甲酰胺抑制剂CPCB。(b)非共价相互作用图(2D)在配体结合袋中显示抑制剂和蛋白质之间的显着接触。以绿色显示了氢键结合的催化三合会(ASP-335,Tyr-383,Tyr-466)。(c)苯甲酰胺抑制剂(青色球和棍子模型)的位置,在人SEH的疏水结合袋中。蛋白质表面从高疏水性(棕色)到极性(蓝色)和钥匙袋残基(标记)以圆柱格式呈现。该图是由3AN的X射线结构坐标创建的[12]。
表现出典型的 B30.2 结构域折叠,由两个反向平行的七链和六链 β 片层组成,排列成扭曲的 β 夹层。此外,两个长环部分覆盖由六链 β 片层定义的 β 夹层的凹面,从而形成带正电的腔体。我们使用序列保守性和突变分析来提供 GN1 假定结合界面的证据。这些研究表明,TRIM7 B30.2 的 Leu423、Ser499 和 Cys501 以及 GN1 的 C 端 33 个氨基酸对于这种结合相互作用至关重要。分子动力学模拟还表明,氢键和疏水相互作用在模拟的 TRIM7 B30.2-GN1 C 端肽复合物的稳定性中起主要作用。这些数据提供了有用的信息,可用于针对这种相互作用开发潜在的治疗剂。
自组装在自然和材料科学中起着至关重要的作用。[1] 在自然界中,生物分子自组装成细胞器,细胞器进一步组织成细胞和多细胞生物体。同样,自组装也用于材料合成,将小的独立单元组织成越来越复杂的结构和材料。[2–4] 一种特别流行的分子单元是聚合物,它已用于制造纳米颗粒、纤维和水凝胶等结构。[5–9] 这些材料虽然在许多领域(特别是在生物医学应用)中都至关重要,但却具有根本的局限性:当前的方法仅报告通过弱非共价相互作用(如疏水、静电或 π-π 堆积相互作用和氢键)进行的聚合物自组装,[1] 这些相互作用都对环境条件(如溶剂极性、温度、离子强度、pH 值和共溶质)极其敏感。此外,
自然界中成千上万的例子证明了光诱导反应在生物合成转化中的重要性。1 光化学在于利用光子将感兴趣的底物从基态转移到激发态,底物可以在激发态下发生反应,随后发生转化。然而,这些高能中间体特别难以驯服,并且会产生不寻常的和不可预见的反应性。人们已经开发出各种策略来利用这些瞬变物种并指导光诱导转化。2 其中,使用特定的超分子相互作用来模板反应被认为是一种特别有吸引力的策略。3 事实上,通过提供确定的二维或三维环境,弱相互作用(例如静电、氢键、p 堆积等)可以模板反应分子并诱导区域和立体选择性。这种策略自然延伸到使用生物分子作为模板支架。4
摘要:由聚(3,3-双(3,3-双基)(四甲基甲基)用四氢呋喃)制成的热固性聚氨酯弹性体和各种多功能异氰酸酯交联,以发现一种调节机械性能的新机制。额外的氢键基序(例如氨基甲酸酯或尿素)是在交叉链接机中构建的,被证明可以从本质上确定弹性体的刚度和韧性,而两个网络的共价交联密度严格控制在同一水平上。由傅立叶转换红外光谱(FTIR),动力学机械分析(DMA)和低场核磁共振(LFNMR)(lfnmr)(lfnmr)的证据(ftir)(ftir)(lfnmr),毫不犹豫地强调和支持聚氨酯热固件的机械性能的影响和支持。■简介聚氨酯弹性体是一种重要的粘弹性材料,在一定温度范围和较大的可逆变形性下具有相对较低的弹性模量。1,2
摘要:由于其高能量和功率密度,锂离子电池(LIBS)已响应对有效储能解决方案的需求而获得了普及。电极体系结构在确定电池性能中的重要性突出了优化的需求。通过开发有用的有机聚合物,已经研究了环糊精体系结构,以提高基于LI的电池的性能。称为环糊精(CD)的大环寡糖具有相对疏水的腔,可以包围其他分子。在许多行业中发现了这种“寄宿与招待”关系有用。CD的氢键和合适的内腔直径已导致其作为锂离子扩散通道的选择。CD也已用作固态电池的固体电解质以及分离器和粘合剂,以确保电极组件之间的粘附。本评论提供了基于CD的材料以及它们在电池组件中的使用方式的一般概述,突出了它们的优势。
我们在这里报告了Darunavir衍生的HIV-1蛋白酶抑制剂的合成和生物学评估及其对MT-2细胞系中酶抑制和抗病毒活性的功能作用。P2'4-氨基功能进行了修改,以使许多酰胺衍生物与HIV-1蛋白酶活性位点的S2'子体中的残基相互作用。几种化合物表现出皮摩尔酶抑制性和低纳摩尔抗病毒活性。确定了与HIV-1蛋白酶结合的氯乙酸衍生物的X射线晶体结构。有趣的是,在X射线暴露期间,活性氯乙酸基团转化为乙酸盐功能。结构表明,P2'羧酰胺功能使增强的氢键相互作用与S2'-阳离子中的骨架原子。
单链DNA的化学结构几乎没有深入了解其作为遗传信息载体的生物学功能。然而,当詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)在1953年表明DNA采用双链结构(复式)时,DNA复制的机理(复制)变得显而易见。双螺旋结构主要是从X射线纤维衍射数据(由Rosalind Franklin和Maurice Wilkins获得的)和Chargaff的规则中阐明的。Erwin Chargaff发现,DNA中的摩尔量始终等于胸腺嘧啶,而对于鸟嘌呤和胞嘧啶也是如此(即g的摩尔数= c)的摩尔数。Watson和Crick能够通过构建模型来解释这一点,以表明DNA的两条链由相反链的单个碱基之间的氢键组合在一起。嘌呤碱始终与嘧啶T和嘌呤G始终与嘧啶C配对(图9)。
几十年来,人们一直在积极研究在极端压力下由碳基聚合物、化合物或其他碳同质异形体(即石墨)形成钻石的过程。1–12 钻石可以通过极端加热和压缩某些塑料、1 甲烷、2,3 和爆炸物形成。10,12 例如,在直线加速器相干光源 (LCLS) 实验中使用原位 X 射线衍射在 139 至 159 GPa 的双冲击聚苯乙烯 (CH) 中检测到立方钻石,这表明碳和氢键的断裂以及碳重组为钻石仅在纳秒时间尺度上即可发生。1 这里给出的结果表明,立方钻石也在 Stycast 1266 环氧树脂(C:H:Cl:N:O.27:38:1:1:5) (参考文献 13) 中形成,该混合物受到 80 和 148 GPa 的双重冲击。这些结果表明,冰巨行星内部的化学和热力学条件适合钻石的形成,其内冰层主要由 CH 4 、 NH 3 和 H 2 O 组成。