摘要:随着神经退行性疾病的增长,为了进一步的知识并提出新的治疗干预措施,正在进行大量多个领域的研究。在这些研究中,对抗氧化剂在对比认知下降中的作用的研究正在提出有趣而有希望的结果。在这篇综述中,我们旨在收集侧重于各种抗氧化剂和富含抗氧化剂的食物在改善或稳定认知功能,记忆和阿尔茨海默氏病(最常见的神经退行性疾病)中的作用。特别是,我们考虑了通过纵向研究或随机的安慰剂控制的证据,这些证据评估了认知能力,记忆能力或神经退行性的进展水平。总体而言,尽管研究方案之间有很多种类,参与者的人群,所使用的神经心理学测试和研究的抗氧化剂,但有一个坚实的趋势表明,抗氧化剂的特性可能有助于阻碍老年人认知能力下降。因此,未来研究的帮助将进一步阐明抗氧化剂在神经保护中的作用,将导致新的干预措施的发展,这些干预措施将考虑到这种发现,以提供更全球的方法来治疗神经退行性疾病。
铁对于支持能量代谢,线粒体功能和维持细胞氧化还原电位至关重要。过量不稳的铁可以在线粒体中产生活性氧,如果未检查,可以导致持续的氧化应激和最终的细胞死亡。帕金森氏病(PD)和多系统萎缩(MSA)是神经退行性疾病,其特征是局部过量的脑铁和导致的病理领域氧化应激,从而导致铁结合小分子的临床试验以治疗其治疗。ath434是一种具有中度铁亲和力(K D 10 -10)[1]的小分子候选药物,可促进细胞铁外排,减少过量的脑铁和聚集的α-突触核蛋白,可提高神经元的存活,并恢复小鼠PD和MSA模型的运动性能。ATH434目前正在2阶段MSA试验中。div> divprone(DFP)是一种高铁亲和药物(K D 10 -21)[2,3]批准用于治疗全身铁超负荷疾病的批准。由于DFP旨在减少细胞铁储存,因此它具有健康细胞中适应不良的药理作用的潜力[4]。DFP也证明了临床前PD模型的功效。但是,鉴于其现成的大脑进入和高铁亲和力,所需的剂量高于预期,这表明ATH434可能具有独特的有益特性。
溶剂是影响植物材料(简单)中主动化合物提取有效性的关键因素。这项研究旨在根据抗氧化剂和酪氨酸酶抑制活性的参数以及太阳保护因子(SPF)值来确定用于提取pepino果实的最佳类型和浓度。使用用乙醇或乙酸乙酯作为溶剂进行浸渍法进行了提取,分别以50%,70%和96%的浓度进行提取。使用1,1-二苯基-2-苯羟基羟基(DPPH)方法评估提取物的抗氧化活性。使用体外测试进行了酪氨酸酶的抑制和SPF值的测定。结果表明,就抗氧化活性,酪氨酸酶抑制和SPF值而言,乙酸乙酸乙酯提取物优于乙醇提取物。在乙酸乙酯溶剂中,浓度为96%,提供了最强的抗氧化剂,酪氨酸酶抑制活性,而在SPF测试中则是第二高。可以得出结论,将pepino果实作为防晒霜的有前途化合物提取的最佳溶剂是乙酸乙酯的96%。
摘要:在整个生命周期中,马养殖动物都在水中耕种,其中包含与它们密切关联的各种微生物。动物与周围水之间的微生物交换。然而,关于虾幼虫与水之间的相互作用,尤其是关于跨个体发育的幼虫细菌选择和微生物群模构的相互作用。使用针对16S rRNA分子的V4区域的HISEQ测序来解决这一差距,我们研究了健康的Penaeus stylirostris幼虫和海水的活性实质性多样性和结构。在不同的幼虫阶段之间的比较揭示了特异性菌群和生物标志物的证据,这是所有阶段常见的核心微生物群,以及连续阶段之间的共享分类单元,表明细菌分类群的垂直传播。比较阶段的微生物群和核心菌群与水矿物的比较强调,许多与幼虫相关的分类单元最初都存在于天然海水中,强调了细菌从水到幼虫的水平传播。由于其中一些谱系在特定的幼虫阶段变得活跃,因此我们建议幼虫能够调节其微生物群。这项研究提供了对幼虫阶段尺度上幼虫 - 微生物群相互作用的见解。
我们现在处于鞋底计划第三阶段的第三阶段资金期间的中间阶段。我们继续我们的目标是将来自不同背景的初级和高级调查员聚集在一起,具有共同的氧化剂,氧化还原平衡和压力信号的共同研究兴趣。为了促进2024 - 2025年中心的持续发展,我们维护了三个由预算降低的科学核心设施。我们的长期计划继续是在南卡罗来纳州发展成为氧化还原生物学科学学科的卓越中心。在最初12年的支持中,RO1成功允许20名毕业生建立成功的独立职业。他们的项目与氧化应激,氧化还原稳态和压力信号的基本面相连,并有助于增强程序化的发展。我们继续通过我们的试点赠款计划来支持调查,在该计划中,我们的科学目标得到了我们在蛋白质组学,细胞和分子成像和分析氧化还原方面的三个科学核心的支持。我们的中心假设没有改变,并且继续是氧化还原调节的途径会影响癌症,衰老,糖尿病,炎症和神经变性等疾病的病理生物学。行政核心继续提供业务管理,教师发展,指导,试点项目任务,计划计划和可持续性。我们已任命指导,内部顾问和外部顾问的监督委员会。我们的咨询小组包含具有科学专业知识的个人,并且还具有丰富的指导经验。目前,MUSC的该计划的未来发展也由医学和药房院长以及教务长办公室的现有财务承诺提供服务。随着我们继续补充核心设施,我们的目标仍然支持同行评审研究者的赠款和对MUSC教师的支持。在过去的一年中,我们已经成功获得了一项设备补充赠款,该拨款扩大了分析氧化还原核心中的氧化还原代谢组学。此外,我们继续与卡罗林斯卡学院和内布拉斯加林肯大学一起组织夏季氧化还原课程,并于2024年在林肯内布拉斯加州举行了6月的日期。
背景:Annao Pingchong汤(ANPCD)是一种传统的中国汤剂,对通过临床和实验研究验证的脑出血(ICH)具有明确的影响。然而,ICH后ANPCD对氧化应激(O)的影响尚不清楚,值得进一步研究。目的:研究ANPCD对ICH的治疗作用是否与减轻OS损伤有关,并寻求潜在的抗氧化作用靶标。材料和方法:通过比较ANPCD的靶基因,ICH和差异表达基因的靶基因(DEGS),鉴定了ICH上ANPCD的治疗性候选基因。蛋白质 - 蛋白质相互作用(PPI)网络分析和功能富集分析与目标相关文献结合使用,以选择合适的抗氧化剂靶标。使用大分子对接验证了ANPCD和所选目标之间的亲和力。随后,通过体内实验进一步研究了ANPCD对OS和所选靶标的影响。结果:筛选了48个候选基因,其中无声信息调节剂SIRTUIN 1(SIRT1)是具有抗氧化作用的核心基因之一,并且ICH显着影响其表达。大分子对接也证明了6种ANPCD和SIRT1的6种化合物之间的良好亲和力。此外,ANPCD显着降低了凋亡率和与凋亡相关蛋白的表达(p53,细胞色素C和caspase-3)。结论:ANPCD减轻了大鼠ICH后的OS损伤和凋亡。体内实验的结果表明,ANPCD显着降低了修饰的神经系统严重程度评分(MNSS)评分(MNSS)和血清MDA和8-OHDG含量,而血清SOD和CAT活性显着增加,与SIRT1,FOXO1,FOXO1,PGC-1 ANPCD上的上调有关,使ANPCD的上调变得复杂。作为潜在的治疗靶标,SIRT1可以像ANPCD一样有效调节其下游蛋白。关键字:脑内出血,Annao Pingchong汤,氧化应激,网络药理学,体内实验,SIRT1
自由基(自由基)是原子或分子中的孤独电子。它可以在环境,生物和细胞中的任何地方,尤其是细胞内或新陈代谢过程中的生产过程,并随氧分子的流动。氧分子中的电子不平衡。在反应中成为自由基和敏捷性,并能够从其他分子中汲取电子以替代缺失的电子,从而使它们保持平衡或稳定,在这种情况下,这种反应将随着链反应并一直发生在细胞中。
摘要:抗菌抗性(AMR)是一个全球公共卫生问题,AMR的迅速增长归因于抗生素的不适当和/或过度使用。因此,正在寻求替代性抗菌剂,包括天然来源的抗菌剂,以开发新药。我们研究的目的是分析来自波兰,欧洲,土耳其和美国的四种牛至精油(OEOS)的化学成分以及抗菌和抗氧化活性。使用23种菌株评估抗菌活性(AMA),包括革兰氏阳性细菌,革兰氏阴性细菌和念珠菌物种。通过DPPH方法确定精油(EOS)的抗氧化活性(AA)。测试的EOS的主要组成部分是Carvacrol(76.64–85.70%)。在波兰OEO中确定了最高的该化合物。我们测试的OEOS显示出抗菌耐药性,对真菌的抗菌耐药性尤其强(MIC = 0.06-0.25 mg/ml -1)。这些产品还显示出高的AA(71.42–80.44%)。OEO高碳纤维酚的主题应成为潜在的抗菌和抗氧化剂的进一步研究的主题。OEO高碳纤维酚的主题应成为潜在的抗菌和抗氧化剂的进一步研究的主题。
摘要:不饱和二酰基甘油是一类抗氧化剂化合物,具有积极影响人类健康的可能性。他们通过根治性的清道夫活动能够打击氧化应激的能力强调了其在预防和治疗策略的背景下的意义。在本文中,我们强调了Anabaena flos-aquae作为不饱和单甘油和二酰基甘油的生产国的作用,然后证明其甲醇提取物的抗氧化活性,其主要成分是各种乙酰甘油类似物。使用可持续策略揭示了这一发现,其中一种菌株在微观中,许多化合物(OSMAC)培养与生物信息学方法结合,以使用分子网络分析来分析大量质谱数据数据集。此策略减少了时间和成本,避免了纯净的纯净步骤,并获得有关提取物代谢组成的信息数据。这项研究强调了Anabaena作为新型生物活性化合物的可持续和绿色来源的作用。
具有营养价值以及其他健康优势的食物称为功能性食品。水果,蔬菜和香料是丰富的抗氧化剂来源,可以帮助防止自由基和环境压力损害。已经证明,食用较高的抗氧化剂的食物降低了癌症,肺气肿,免疫缺陷,呼吸系统疾病,心脏病和中风等退化性疾病的风险。它还降低了帕金森氏病和其他炎症状况的风险。传统的印度尼西亚发酵大豆基的食品或大豆和称为“ Tempe”的食品与许多健康益处有关,包括较低的心血管疾病风险,较低的癌症风险,改善骨骼健康和增强的免疫功能。本文研究了Tempe作为具有抗氧化特性的餐食的潜力,并提出了一种可以触发NRF2介导的抗氧化剂反应的机制。这项研究通过合成潜在的生物分子途径,以在细胞水平上合成潜在的抗氧化作用来了解TEMPE的潜在应用,发育和增强。