磁耦合材料的应用为磁性的探索以及二维极限下的自旋电子学应用提供了新的机遇。[7–9] 在所有基于范德华层状体系的界面工程异质结构中,磁邻近效应对于操控自旋电子学、[10–12] 超导[13–15] 和拓扑现象至关重要。[16–18] 磁性 skyrmion 因其非平凡拓扑结构而得到深入研究,这导致了许多有趣的基本和动力学特性。[19–21] 这些主要见于非中心对称单晶[22–24] 超薄外延系统[25,26] 和磁性多层膜。 [27–31] 最近,在与氧化层 [32] 或过渡金属二硫化物 [33] 界面的范德华铁磁体中观察到了 Néel 型 skyrmion,通过调整铁磁体厚度可以控制 skyrmion 相。此外,使用各种范德华磁体,可以在其新界面中创建具有独特性质的 skrymion 相。承载多个 skyrmion 相的材料增加了该领域的丰富性,并且在设计方面具有额外的自由度
2 回顾WBG器件、SiC MOSFET、电源模块及其可靠性挑战。 6 2.1 WBG 器件 6 2.2 SiC MOSFET 特性 8 2.2.1 V gs(栅极 - 源极电压) 10 2.2.2 阈值电压 (V th ) 11 2.2.3 导通电阻 R on 12 2.3 SiC 功率模块 14 2.4 SiC 功率模块的当前行业实践 18 2.5 SiC MOSFET 的故障症状 21 2.5.1 栅极氧化层故障 21 2.5.2 体二极管故障 23 2.5.3 栅极漏电流故障 25 2.5.4 导致故障的雪崩事件 27 2.6 可靠性简介 28 2.6.1 功率模块中的电源循环 29 2.6.2 热膨胀和诱发应力 30 2.7 电源循环故障模式 31 2.7.1 引线键合疲劳 32 2.7.2 士兵退化 33 2.7.3 金属化重建 34 2.8 功率循环测试 35 2.8.1 功率循环寿命模型 38
感染植入物的手术。[1] 在植入医疗器械的过程中,细菌可能会污染其表面并形成生物膜,从而引起感染。[2] 所施用的抗生素通常无法穿透生物膜,因此唯一的可能性就是取出植入物并重新插入。成功的骨植入物不仅应具有抗菌特性,还应促进与宿主骨组织的整合(骨整合 [3] )。理想情况下,生长和分化因子会引发生物事件,从而导致植入物周围形成新骨。[3] 如果没有这种与骨骼的结合,就会发生无菌性松动,从而导致植入物失败。与其他金属相比,钛植入物已经具有更好的生物相容性,因为氧化层会吸引成纤维细胞和其他重要细胞来促进骨骼生长。然而,仍然需要更优质的材料,因为截至目前,大约 10% 的植入物会失败。[4] 除了给医疗保健系统带来巨大的财务成本外,这还会给患者带来巨大的心理负担。[5]
摘要 — 当氧化层变薄,栅极长度变短时,MOSFET 器件中会出现短沟道效应 (SCE)。本研究的目的是寻找一种新的电介质和栅极材料来取代传统的氧化物二氧化硅 (SiO 2 ) 和多晶硅作为栅极材料。本研究的目的是研究使用不同类型的高 k 电介质材料和锗 (Ge) 作为栅极材料的 MOSFET 的性能。使用 Silvaco TCAD 工具制造和模拟 MOSFET 结构。基于电流-电压 (IV) 特性评估 MOSFET 的整体性能。结果表明,用 HfO 2 和 Ge 作为电介质和栅极材料制造的 MOSFET 具有较高的驱动电流,漏电流比传统 MOSFET 降低了 0.55 倍。因此,与 SiO 2 和多晶硅相比,MOSFET 结构中 HfO 2 和 Ge 的组合具有最佳性能,因为它在缩小器件尺寸时产生较小的漏电流和较小的 V th,从而降低 SCE。
探索磁性的机会,以及在2D限制中朝着旋转的应用。[7–9]在基于VDW外行系统的所有接口工程异质结构中,磁接近效应是操纵自旋的效果不可或缺的,[10-12]超导[13-15]和拓扑作用。[16–18]由于其非平凡拓扑结构,磁性天空已得到很好的研究,这导致了许多有趣的基本和动力学特性。[19-21]这些已报告主要是针对非中心单晶体的,[22-24]超薄外延系统,[25,26]和mag-Netic多层。[27–31]最近在与氧化层[32]或过渡金属二色氏元素[33]中连接的VDW铁磁体中观察到了Néel-type天空,并通过对滑敏相的控制,通过对滑敏相的控制进行调整。fur-hoverore,带有各种VDW磁铁,可以在其具有独特属性的新界面中创建Skrymions阶段。主持多个天际阶段的材料为该领域增添了丰富性,并具有额外的自由度设计
本文探讨了脉冲激光沉积 (PLD) 透明导电氧化物 (TCO) 在高质量超薄多晶硅基钝化接触上的适用性。通过减小多晶硅层厚度,可以最大限度地减少多晶硅层引起的寄生吸收。然而,多晶硅触点上的 TCO 沉积(通常通过溅射)会导致严重的沉积损伤,并进一步加剧较薄多晶硅层(<20 纳米)的表面钝化。虽然可以使用高温(约 350 摄氏度)热处理来部分修复表面钝化质量,但由于在多晶硅/ITO 界面形成了寄生氧化层,接触电阻率严重增加。或者,我们表明 PLD TCO 可用于减轻超薄(约 10 纳米)多晶硅层的损伤。通过增加沉积压力可以进一步改善多晶硅触点钝化,同时通过在高质量超薄多晶硅(n+)触点上使用 PLD 掺杂铟的氧化锡 (ITO) 层可实现低触点电阻率(约 45 m Ω cm 2)和良好的热稳定性(高达 350 °C)。通过将 PLD ITO 膜的出色光电特性与 10 nm 薄多晶硅触点相结合,可以实现高度透明的正面触点。
一般特性。铝及其合金具有独特的性能组合,使铝成为用途最广泛、最经济、最具吸引力的金属材料之一,从柔软、高延展性的包装箔到要求最严格的工程应用。铝合金作为结构金属的使用量仅次于钢。铝的密度只有 2.7 g/cm 3 ,大约是钢(7.83 g/cm 3 )的三分之一。一立方英尺的钢重约 490 磅,而一立方英尺的铝只有约 170 磅。如此轻的重量,加上一些铝合金的高强度(超过结构钢),使我们能够设计和建造坚固、轻便的结构,这种结构对任何运动物体都特别有利,例如航天器和飞机以及所有类型的陆地和水运工具。铝能抵抗导致钢生锈的那种逐渐氧化。铝的暴露表面与氧气结合形成一层厚度仅为几千万分之一英寸的惰性氧化铝膜,阻止进一步氧化。而且,与铁锈不同,氧化铝膜不会剥落,露出新的表面,从而进一步氧化。如果铝的保护层被刮伤,它会立即重新密封。薄薄的氧化层本身紧紧贴在金属上,无色透明——肉眼看不见。铁和钢的变色和剥落
基于环氧的成型化合物(EMC)被广泛用于封装汽车电子产品。在高温运行下,EMC被氧化并在机械性能中经历降解。这可以改变封装的电子组件的热机械行为,从而影响其可靠性。Three key aspects of EMC oxidation in the context of microelectronics reliability are pre- sented in this paper – (1) degradation of EMC specimens is studied under high temperature aging at three different temperatures – 170 ° C, 200 ° C, and 230 ° C for up to 1500 hours and the oxidation growth is documented as a function of aging duration and temperature using a fluorescence microscope; (2)使用全氧化标本对氧化EMC(Viz。,弹性模量,热膨胀系系和玻璃过渡温度)的批判性热机械性能进行了实验表征; (3)通过将热老化套件的变形与在治疗周期下的原始包装的变形进行比较,研究了EMC氧化对电子包装的热机械行为的影响。这项研究表明,EMC在暴露于高温的早期(≈24小时)中迅速氧化,氧化层表现出明显不同的热力学特性。因此,热老化发展了较硬的包装行为,这对于准确的可靠性评估至关重要。
静电放电 (ESD) 引起的损坏是集成电路的主要失效之一。在当今集成电路所采用的 7nm FinFET 工艺中,由于 FinFET 栅极氧化层的厚度减小以及高 k 电介质的可靠性较低,在静电放电 (ESD) 冲击下极其脆弱[1-3],并且遭遇非致命的 ESD 冲击后,ESD 保护性能会逐渐下降[4,5]。一些 ESD 建模和仿真技术已被用于 FinFET 工艺,以帮助分析 ESD 冲击下的 ESD 保护特性[6-9]。ESD 保护二极管被认为是一种很有前途的 ESD 保护器件[6-8]。具有高鲁棒性的二极管串硅控整流器 (DSSCR) 也被认为是以前技术节点的 ESD 保护装置 [ 10 – 15 ],但由于其高漏电和闩锁的较大回弹,它不再适用于 7 nm 技术。FinFET 工艺的 ESD 设计仍然是一个巨大的挑战。目前还没有一种具有足够低触发电压 (Vt) 和高故障电流 (It2) 的高鲁棒性 ESD 保护装置。在本文中,我们提出了一种基于 7 nm FinFET 工艺的新型硅控整流器嵌入式二极管 (SCR-D)。制造并分析了具有不同关键设计的这种保护的特性。
3.2.2 表面五金件。表面五金件(不包括 VIII 尺寸机柜上的密码锁、手提把手和锁盘保护器)应为缎面阳极氧化铝或不锈钢,或缎面铬钢或压铸锌、黄铜或青铜。单个装置上使用的所有五金件的外露表面应在所用基材和保护涂层的范围内进行加工以相互匹配。所有表面五金件的外露表面均不得有穿透保护镀层或阳极氧化层的锋利边缘、毛刺、凹坑、缺口或划痕。3.2.3 饰面材料。3.2.3.1 瓷漆和清漆。机柜的最终涂层应为粉末涂层、环氧树脂、丙烯酸、清漆或聚氨酯,厚度为 3.0 密耳。颜色应符合 3.2.4 中的规定。3.2.3.2 镀铬。镀铬应符合 QQ-C-320 的 I 级 II 型要求。3.2.3.3 镀镉。镀镉应符合 QQ-P-416 的 I 级要求。3.2.3.4 镀锌。镀锌应符合 ASTM B633 的 I 型要求,镀层厚度等级为 Fe/Zn 8。3.2.4 表面处理颜色。表面处理颜色应符合 FED-STD-595 规定的以下颜色(见 6.2)。灰色 - 颜色编号 26134 黑色 - 颜色编号 27040 羊皮纸 - 颜色编号 27769(标准颜色的样板可从美国总务管理局联邦供应服务处华盛顿特区 20407 的业务服务中心或最近的地区办事处的业务服务中心免费获得。)第 7 页