氧化应激和酶功能障碍氧化应激在神经退行性疾病的发病机理中起重要作用,并且几种酶参与了反应性氧(ROS)的产生和消除。在帕金森氏症等疾病中,线粒体功能障碍导致ROS的产生增加,这会对蛋白质,脂质和DNA造成氧化损害。酶,例如超氧化物歧化酶(SOD)和过氧化氢酶是负责排毒ROS的,但是这些酶的突变或功能障碍会导致氧化应激和神经元死亡的增加。在ALS中,SOD1基因与SOD1的相关,SOD1中的突变导致有毒自由基的产生,从而导致运动神经元变性。在阿尔茨海默氏病中,存在淀粉样蛋白β斑块会加剧氧化应激,淀粉样蛋白斑块可以与铜和铁等金属离子相互作用,产生ROS。调节金属稳态的酶,例如金属霉素,也可能在神经退行性疾病中破坏,加剧氧化损伤。
Telomir Pharmaceuticals是一家临床前阶段的生物制药公司,开发了一种旨在延长DNA保护性端粒帽的产品。先前报道的临床前测试表明,该公司的主要疗法Telomir-1可以延长端粒,初始动物测试说明了潜在的影响。实际上,该公司最近发布了其中一项测试的结果,据首席执行官埃雷斯·阿米诺夫(Erez Aminov)称,“确认telomir-1可以逆转生物学衰老,延长寿命的同时保持健康。”公司管理公司刚刚发布了2024年的年度报告,该报告显示了该公司在进行研究方面的进展,同时还显示出现金余额的改善,这是一家公司在此阶段的非常积极的发展。该公司最近还发布了端粒链球研究对人类细胞系的临床前研究的潜在突破性结果。来自测试的数据表明,Telomir-1“完全反向铜诱导的活性氧(ROS)升高并提供了可抗铜毒性的鲁棒细胞保护。”当自由基(ROS)和体内抗氧化剂之间存在不平衡时,就会发生氧化应激,从而导致细胞损伤。自由基是可能损害蛋白质,DNA和细胞膜的不稳定分子,而抗氧化剂有助于中和它们。这种不平衡会导致衰老,并与各种疾病的发展有关。它也与慢性阻塞性肺部疾病(COPD)和肾脏疾病等疾病的并发症有关。这种氧化损害加剧了疾病的进展,并增加了严重结果的风险。氧化应激在慢性疾病中起关键作用,例如心血管疾病(例如,动脉粥样硬化和高血压),神经退行性疾病(例如,阿尔茨海默氏病和帕金森氏病),糖尿病,糖尿病,癌症,癌症和炎症性疾病。telomir正在评估端粒-1的治疗病毒感染,例如禽流感,也称为鸟流感,其中氧化应激是疾病严重程度的关键因素。病毒感染触发并利用过多的ROS产生作为促进复制的模式,导致广泛的炎症,细胞损伤和免疫反应受损。根据该公司的说法,目前尚无批准的药物,专门针对由鸟类流感或类似病毒引起的氧化应激。 telomir-1逆转氧化应激和保护细胞的能力为解决这一差距提供了有希望的途径。 通过减轻与氧化应激相关的细胞损伤,telomir-1具有在降低此类感染的严重程度中发挥关键作用的潜力。根据该公司的说法,目前尚无批准的药物,专门针对由鸟类流感或类似病毒引起的氧化应激。telomir-1逆转氧化应激和保护细胞的能力为解决这一差距提供了有希望的途径。通过减轻与氧化应激相关的细胞损伤,telomir-1具有在降低此类感染的严重程度中发挥关键作用的潜力。
摘要:目标:普罗蛋白转化酶枯草蛋白/KEXIN 9型(PCSK9)抑制剂是一种新型的胆固醇 - 降低胆固醇药物,可以减少动脉粥样硬化,而与全身性脂质变化无关。然而,PCSK9抑制剂预防动脉硬化的机制尚未完全阐明。最近的证据已经揭示了PCSK9抑制剂与氧化应激之间的相关性,这加速了动脉粥样硬化的发展。此外,越来越多的研究表明,自噬可保护脉管系统免受刺激性的影响。因此,这项研究的目的是研究PCSK9抑制对动脉粥样硬化中氧化应激和自噬的作用,并确定自噬是否调节PCSK9抑制作用介导的氧化应激和巨噬细胞中的炎症。方法:雄性载脂蛋白E(APOE) - / - 小鼠喂给高脂饮食(HFD)8周,然后接受PCSK9抑制剂(Evolocumab),媒介物或Evolocumab加上Evolocumab加氯喹(CQ),再进行8周。对照组中的APOE - / - 小鼠定期(即非高脂饮食)喂食16周。在氧化的低密度脂蛋白(OX-LDL)治疗的人类急性单核细胞性白血病细胞系THP-1衍生的巨噬细胞中进行其他体外实验,以模仿动脉粥样硬化的病理生理过程。结果:PCSK9抑制剂治疗减少了氧化应激,脂质沉积和斑块病变区域,并在HFD喂养的APOE-/ - 小鼠中诱导自噬。最重要的是,氯喹(CQ)的给药,一种自噬抑制作用,显着降低了PCSK9抑制剂治疗对HFD喂养的APOE-/ - / - 小鼠的氧化应激,脂质积累,炎症和动脉粥样硬化病变的有益作用。体外实验进一步表明,PCSK9抑制剂增强了由OXLDL处理的THP-1衍生的巨噬细胞中的自噬通量,如自噬体和自染色体的数量增加所示。此外,自噬抑制剂CQ还降低了PCSK9抑制介导的对氧化应激,反应性氧(ROS)的产生(ROS)和OX-LDL处理的THP-1衍生的巨噬细胞中的炎症。结论:这项研究揭示了一种新型的保护机制,PCSK9抑制可增强自噬,从而减少动脉粥样硬化的氧化应激和炎症。
摘要:许多研究发现氧化应激或自由基参与糖尿病的进展,在糖尿病期间起着重要作用,包括胰岛素作用受损和并发症发病率增加。本综述基于通过使用 PubMed、Medline、Scopus 等不同网站检测自由基在糖尿病进展中的作用。内皮细胞还含有大量的醛酮还原酶,因此容易增加多元醇途径的激活。此外,大量证据支持以下假设:高血糖或糖尿病会导致血管二酰甘油积聚,随后激活 PKC,从而导致各种心血管缺陷。氧和氮自由基 (ROS/RNS) 水平的升高与脂质过氧化、蛋白质的非酶糖基化和葡萄糖氧化有关,这会导致糖尿病及其并发症。大多数研究表明氧化应激与糖尿病及其与心脏、肝脏、肾脏和眼睛相关的并发症之间存在关联。因此,氧化应激在代谢紊乱,特别是 NIDDM 中似乎更令人担忧。结论是,代谢氧化是胰岛素依赖型和非胰岛素依赖型糖尿病背后的最重要因素。关键词:氧化应激、非胰岛素依赖型糖尿病、自由基、抗氧化剂
脊髓损伤 (SCI) 是一种与缺氧缺血和炎症有关的严重中枢神经系统 (CNS) 损伤疾病。其特征是过量活性氧 (ROS) 生成、神经细胞氧化损伤和线粒体功能障碍。线粒体是 ROS 的主要细胞来源,其中氧化磷酸化中的电子传递链复合物经常遇到电子泄漏。这些泄漏的电子与分子氧发生反应,产生 ROS,最终导致氧化应激的发生。氧化应激是 SCI 后常见的继发性损伤形式之一。线粒体氧化应激可导致线粒体功能受损并破坏细胞信号转导途径。因此,恢复线粒体电子传递链 (ETC)、减少 ROS 生成和增强线粒体功能可能是治疗 SCI 的潜在策略。本文主要探讨线粒体氧化应激在脊髓损伤中的病理生理作用,并详细评估各种针对线粒体的抗氧化疗法(包括药物和非药物疗法)对脊髓损伤的神经保护作用,以期为脊髓损伤领域的未来研究提供有价值的见解和参考。
糖尿病肾病 (DKD) 仍然是全球慢性肾病 (CKD) 的主要原因。DKD 的发病机制受功能、组织病理学和免疫机制的影响,包括 NLRP3 炎症小体活性和氧化应激。多年来,钠-葡萄糖协同转运蛋白 2 抑制剂 (SGLT2i) 在多项临床研究中显示出代谢益处和减缓 DKD 进展的能力。最近的研究表明,抗糖尿病活性还延伸到抑制炎症反应,包括调节 NLRP3 炎症小体、减少促炎标志物和减少氧化应激。在这里,我们回顾了 SGLT2i 在 CKD 治疗中的疗效,并讨论了炎症反应在 DKD 发展中的作用,包括它与 NLRP3 炎症小体和氧化应激的关系。
氧化应激是指细胞中自由基的过量浓度,从而导致细胞功能受损。氧化应激的发展取决于细胞内自由基的产生率、自由基的清除率以及修复其造成的损害的率 (12)。糖尿病是一种危险的疾病,身体无法正常产生或使用胰岛素(胰岛素抵抗)。这会导致高血糖和自由基产生增加,从而导致氧化应激。在这项研究中,糖尿病患者和非糖尿病患者在 DPPH 方面没有发现显著差异。我们的研究结果表明,总抗氧化能力可能会降低 2 型糖尿病并发症的风险。需要进行更多研究才能了解上述生物学机制。
摘要:由于活性氧(ROS)的过量产生,血管内皮内的氧化应激被认为是2型糖尿病的心脏血管并发症的起始和进展至关重要的。ROS一词包括多种化学物种,包括超氧化阴离子(O 2• - ),羟基自由基(OH - )和过氧化氢(H 2 O 2)。虽然低浓度ROS的本构生成对于正常的细胞功能是必不可少的,但过量的O 2• - 可能导致不可逆的组织损伤。过量的ROS产生由黄嘌呤氧化酶,未偶联的一氧化氮合酶,线粒体电子传输链和烟酰胺腺苷二核苷酸磷酸(NADPH)氧化酶催化。在O 2• - - NADPH氧化酶的NOX2同工型中被认为对2型糖尿病中发现的氧化应激至关重要。 相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。 本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。被认为对2型糖尿病中发现的氧化应激至关重要。相比之下,转录调控的NOX4同工型产生H 2 O 2,可以发挥保护作用,并有助于正常的葡萄糖稳态。本综述描述了NOX2和NOX4的关键作用,以及NOX1和NOX5在葡萄糖稳态,内皮功能和氧化应激中的关键作用,其关键重点侧重于它们在健康中的调节,并且在2型糖尿病中的调节失调。
通过在饮食中加入各种富含抗氧化剂的食物,可以预防和控制女性糖尿病。均衡饮食包括富含维生素 C 和 E、多酚和黄酮类化合物的食物,有助于通过减少氧化应激和炎症来预防糖尿病的发生。这反过来可以改善胰岛素敏感性,降低血糖水平,并降低与糖尿病相关的并发症的风险,如心血管疾病和神经损伤。除了改变饮食习惯外,定期进行体育锻炼和控制体重对于预防糖尿病也至关重要。运动通过增加抗氧化剂的产生和提高胰岛素敏感性来增强身体控制氧化应激的能力。女性还应注意保持健康的体重,因为肥胖是患 2 型糖尿病的主要风险因素。压力管理和充足的睡眠对于控制氧化应激水平和促进整体健康也至关重要。