会议主题:用于太阳能收集的宽带隙材料 16:00 Luis Pereira 教授 (*) 里斯本新大学,葡萄牙 氧化物纳米结构在机械能收集中的应用 16:45 Frank Herklotz 博士 德累斯顿工业大学,德国 SnO 2 中的间隙氢供体:全面的光谱研究 17:00 Dwight R. Acosta Najarro 博士 墨西哥国立自治大学,墨西哥城,墨西哥 通过气动喷雾热解沉积的掺杂铼的 WO3 薄膜的电致变色性能恢复 17:15 Lars Korte 博士 (*) 柏林亥姆霍兹材料与能源中心,德国 高效钙钛矿/硅串联太阳能电池:材料和界面设计方面的挑战 19:00 特邀发言人晚宴(“Auerbachs Keller”) 2024 年 9 月 24 日,星期二 10:00 游览莱比锡美术馆 - MdbK (www.mdbk.de) 地点:Katharinenstraße 10 12:30 午餐(Aula) 会议主题:非晶态和非化学计量 TCO 14:00 Julia Medvedeva 教授(*)美国密苏里大学 材料基因组方法研究非晶态氧化物半导体中的缺陷 14:45 Takashi Koida 博士 日本筑波国家先进工业科学技术研究所 (AIST) 具有优异导电性的非晶态 SnO ₂ 薄膜:生产方法、特性和与非晶态 In ₂ O ₃ 薄膜的比较分析
人类有机体在正常情况下是一个稳定的系统,就持续的过程而言,可追溯的化学和生化标记的值在已知且通常非常狭窄的范围内移动。这一事实用于医学的所有领域,以诊断潜在的健康问题(标准血液,尿液,粪便等。测试)。在骨科中,植入大型关节置换后的早期,炎症性迷失可能是一个问题[1-4]。溶液通常在炎症过程以宏观水平表现出来时开始。即使在初始阶段,炎症的发生也与手术伤口中的pH下降有关。pH传感器将在植入物附近暂时分配,可以立即表明炎症过程并使干预措施更有效[5-7]。一个可植入的pH传感器,因为医疗设备必须满足几个要求[8]。必须由批准用于在体内应用的材料制成,必须在一个pH单位级别的更改中足够敏感,必须稳定几个月,必须不得
抽象的片上光电探测器是光学通信中必不可少的组件,因为它们将光转换为电信号。光压计是光电探测器的类型,它通过在光吸收时由电子温度波动引起的电阻变化起作用。它们被广泛用于从紫外线到mir的宽波长范围,并且可以在宽大的材料平台上运行。在这项工作中,我引入了一种新型的波导集成剂量计,该重点在标准材料平台上从NIR到MIR以透明的导电氧化物(TCO)作为活性材料运行。此材料平台可以使用相同的材料同时构建调制器和光电探测器,该材料完全兼容CMO,并易于与被动芯片组件集成。此处提出的光压计由放置在肋光子波导内部的薄质TCO层组成,以增强光吸收,然后将TCO中的电子加热至高于1000 K的温度。电子温度的升高导致电子迁移率降低电子迁移率和导致的电阻变化。因此,只需几乎没有光学输入功率的微量流量,就可以达到超过10 A/W的响应率。计算表明,通过较低的TCO掺杂,可以预期进一步改进,从而在片上光电探测器中打开新的门。
1。数字逻辑将最重要的位(MSB)设置为“ 1” 2。比较器将转换值与采样值3。基于比较器结果4。对于连续的位[4] Maloberti,F。(2007),该操作是递归重复的。数据转换器。Springer科学与商业媒体。
该行业的快速发展,废物产生的越多。当今关注的行业之一是产生重金属金属废物的设备,电子和化学工厂。重金属是一种有毒的化学元素,因为与水相比,特异性很高(Faridi等,2022)。锡,铅和镉是重金属中常见的毒药。重金属废物会导致污染和有毒的水源,因为重金属的负面特性不能被逆转,并且会损害人类健康,例如癌症,神经系统损害并减少器官的生长(Sulaiman等人,2021年)。处理重金属废物的努力之一是吸附过程,因为吸附方法是一种相对简单的方法,可负担得起的成本,并且可以从未使用的生物量的残余物中使用自然材料的吸附物(Widiyanto等,2017)。
摘要:铜具有很高的热导率,是现代航空航天推进系统中热应力部件冷却的关键材料。在此类应用中使用铜材料需要材料具有很高的强度和高温稳定性,这可以通过氧化物弥散强化的概念来实现。在这项研究中,我们展示了使用激光增材制造对两种高导电沉淀强化 Cu-Cr-Nb 合金进行氧化物强化。通过在行星磨机中进行机械合金化,将气雾化的 Cu-3.3Cr-0.5Nb 和 Cu-3.3Cr-1.5Nb (wt.%) 粉末材料用 Y 2 O 3 纳米颗粒装饰,然后通过激光粉末床熔合 (L-PBF) 的激光增材制造工艺进行固结。虽然可以制造出致密的强化和非强化合金样品 (>99.5%),但氧化物弥散强化合金还表现出均匀分布的富含钇和铬的氧化物纳米颗粒,以及所有受检合金中存在的 Cr 2 Nb 沉淀物。较高的铌含量导致维氏硬度适度增加约 10 HV0.3,而均匀分散的纳米级氧化物颗粒导致材料强度与非强化合金相比显著增加约 30 HV0.3。
3D型号-PENA138_MODEL -PDF 3D型号-PENA138_MODEL -STEP 3D型号-PENA138_MODEL -IGES目录 - F节F-配件目录 - 完整线路burndy目录产品交叉部分图像 - s) SDS -PENETROX A -13葡萄牙SDS SDS -PENETROX A -13德国SDS SDS -PENETROX A -13 SDS SDS -PENETROX A -13 ITALIAN SDS SDS SDS -PENETROX A -13法国SDS SDS SDS
图3.1示意图说明了脉冲激光消融事件的关键元素。(a)激光辐射的初始吸收(由长箭头表示),熔化和蒸发开始(阴影区域表示融化的材料,短箭头表示固体 - 液态界面的运动)。(b)融化前端传播到固体,蒸发持续,激光 - 泵相互作用开始变得很重要。(c)通过羽流和血浆形成吸收入射激光辐射。(d)融化前向后退,导致最终重新固定化。