格陵兰鲨鱼是一个海洋谜。该生物认为这是世界上最长的脊椎动物。他们在100年后性成熟,生存了四个多世纪。鲨鱼还包含一些最高的生物学观察到的组织浓度,称为三甲胺N-氧化物(TMAO)。虽然在食用新鲜时有毒,但格陵兰鲨会被压缩并干燥以降低tmao含量,并生产一种发酵又有臭味的食物,称为Hákarl。这些古老的“鲨鱼叮咬”是独一无二的,但正是TMAO引起了科学界最近的关注。这是因为TMAO被标记为心脏病的“新红麻风险”(Abbasi,2019年)。的确,已经发表了许多研究,将较高的TMAO浓度与心血管疾病以及人类中非酒精脂肪肝病(NAFLD)联系起来(Li等人,2017b,Roncal等,2019; Tan等,2019);但是,科学是有争议的,受到重大批评。研究以红肉,乳制品,鸡肉,鸡肉,鸡蛋和鱼类在肠道中分解为三甲胺(TMA)的饮食中L-肉碱,胆碱或甜菜碱的能力,这些能力被含有烯烃的含有烯烃的Monooxygengengengerase-3(FMO3)(FMO3)(FMO)分解为三甲胺(TMA)(TMA)(TMA)。对于乳制品行业来说,TMAO的故事有几种影响。首先,内源性tmao的增加可能间接反映胆碱,甜菜碱或L-肉碱的胃肠道降解和有限的生物利用度,这些胆碱,肉碱或L-肉碱通常被作为乳房牛牛牛的肉豆蔻补充剂喂养。第二,TMAO可能会对牛代谢产生直接影响,从而影响动物的牛奶产量或健康。第三,牛奶和乳制品是胆碱和胆碱等牛皮前体的潜在来源,因此对消费者质疑自己的乳制品摄入量表示了潜在的关注。本评论打破了人类和奶牛对TMAO的当前理解。考虑了TMAO在人类疾病发展中的关联和因果作用,重点是潜在的作用方式。研究的研究集中在乳制品消费和TMAO之间的关系中,以意识到仅单一的饮食成分(如乳制品)不足以影响疾病的进展。
摘要:磁氧化铁(IO)纳米颗粒具有较长的血液保留时间,生物降解性和低毒性已成为体外和体内生物医学应用的主要纳米材料之一。io纳米颗粒具有较大的表面积,可以设计用于提供大量的功能组,用于与涉及肿瘤靶向的配体的交联,例如单克隆抗体,肽或小分子,用于诊断成像或递送治疗剂的诊断成像。io纳米颗粒具有独特的顺磁性,从而产生显着的易感性效应,从而产生强t 2和t * 2对比度,以及在非常低浓度的磁共振成像(MRI)下的t 1效应,用于临床肿瘤学成像。我们回顾了靶向IO纳米颗粒的开发用于肿瘤成像和治疗的最新进展。关键字:氧化铁纳米颗粒,肿瘤成像,MRI,治疗
1型糖尿病(T1D)是一种自身免疫性疾病,其特征是胰腺中产生胰岛素的B细胞。这种破坏会导致慢性高血糖,因此需要终身胰岛素治疗来管理血糖水平。通常在儿童和年轻人中被诊断出,T1D可以在任何年龄段发生。正在进行的研究旨在揭示T1D潜在的确切机制并开发潜在的干预措施。其中包括调节免疫系统,再生B细胞并创建高级胰岛素输送系统的努力。新兴疗法,例如闭环胰岛素泵,干细胞衍生的B细胞替代和疾病改良疗法(DMTS),为改善T1D患者的生活质量并有潜在地朝着治疗方向前进。目前,尚未批准用于第3阶段T1D的疾病改良疗法。在第3阶段中保留B -cell功能与更好的临床结局有关,包括较低的HBA1C和降低低血糖,神经病和视网膜病的风险。肿瘤坏死因子α(TNF-A)抑制剂在三阶段T1D患者的两项临床试验中,通过测量C肽来保存B细胞功能,证明了效率。然而,在T1D的关键试验中尚未评估TNF-A抑制剂。解决T1D中TNF-A抑制剂的有希望的临床发现,突破T1D召集了一个主要意见领导者(KOLS)的小组。研讨会
建议引用推荐引用de Silva,K S.B; Gambhir,S;王,小林; Xu,x; Li,W X。;大卫·L(David L。)军官;韦克斯勒,D;华莱士,G。和Dou,S。X。:减少氧化石墨烯添加对MGB2 2012,13941-13946的超导性的影响。 https://ro.uow.edu.au/engpapers/4851
由于高电力,快速充电/放电速率和长周期稳定性,对超级电容器在储能系统中的应用越来越兴趣。研究人员最近专注于开发纳米材料,以增强其超级电容器的电容性能。尤其是,由于其扩大的特定表面积,将纤维作为模板的利用带来了理论和实用的优势,这会导致快速电解质离子扩散。此外,据信,氧化还原活性成分(例如过渡金属氧化物(TMO)和导电聚合物(CPS))被认为在改善基于晶格材料的电化学行为方面起着重要作用。尽管如此,含有基于TMO和CP的纤维的超级电容器通常患有下等离子传输动力学和电子电导率较差,这会影响电极的速率能力和循环稳定性。因此,基于TMO/CP的脑的发展引起了广泛的关注,因为它们协同结合了两种元素的优势,从而在电化学领域具有革命性的应用。本综述描述并重点介绍了基于TMO-,CP-和TMO/CP基于其设计方法,为超级电容器应用的配置和电化学性能的开发的进展,同时为未来的存储技术提供了新的机会。©2019作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
植物病原体代表着对农作物生产的持续威胁,并且对全球粮食安全造成了重大障碍。在感染过程中,这些病原体时空将大量效应子部署到破坏宿主防御机制和/或操纵细胞途径,从而促进定植和感染。然而,除了它们在发病机理中的关键作用外,某些效应子(称为气相(AVR)效应子)可以直接或通过植物耐药性(R)蛋白直接或间接感知,从而导致种族特异性抗性。对复杂的AVR-R相互作用的深入了解对作物的遗传改善和保护它们免受疾病的影响至关重要。agnaporthe oryzae(m。oryzae)是水稻爆炸疾病的病因,是一种异常毒性和毁灭性的真菌病原体,可引起50多种单子叶植物物种的爆炸疾病,包括经济上重要的农作物。rice-M。Oryzae病态系统是AVR效应子功能解剖及其与R蛋白和水稻中其他靶蛋白相互作用的主要模型,这是由于其科学的优势和经济意义。在阐明AVR效应子在大米和Oryzae之间相互作用中的潜在作用方面取得了显着进步。本综述全面讨论了Oryzae AVR效应子的最新进步,并通过与感染过程中水稻中相应的R/靶标蛋白的相互作用进行了特定的重点。此外,我们通过利用M. Oryzae AVR效应子获得的结构见解来审议工程R蛋白的新兴策略。
氢气有望像电力一样是清洁能源载体,可能会用于燃料电池车等技术。广泛采用氢可以减少碳排放;但是目前,它是由化石燃料生产的。可再生能源波动且能量密度低,因此需要存储才能有效使用它。在这项研究中,我们将开发中端温度固体氧化物电解细胞,以有效地将过量的可再生能力转化为氢以存储,尤其是通过创新细胞的发展。
1969 年,人们发现一种以前未知功能的牛红细胞蛋白具有催化超氧化物自由基歧化活性 (1-3)。这种酶,即超氧化物歧化酶,是一种金属蛋白,每分子含有 2 (1.8-2.0) 个铜原子和 2 (1.7-1.9) 个锌原子,分子量为 33,000,由两个大小相同的亚基组成 (4, 5)。从其他真核生物中纯化的铜锌歧化酶在分子量、亚基结构、氨基酸组成、铜锌含量以及对纯化所用的氯仿-乙醇混合物的稳定性方面与牛红细胞歧化酶相似 (2, 3)。细菌来源的酶代表一类独特的超氧化物歧化酶,其每个分子含有 1-2 个锰原子作为金属辅因子,对氯仿-乙醇处理不稳定,其氨基酸组成与铜锌歧化酶明显不同(2、3、6-8)。细菌酶的分子量约为 40,000,每个酶含有两个分子量为 20,000 的亚基。最近又分离出两种超氧化物歧化酶,其稳定性、纯化特性和氨基酸组成与细菌锰歧化酶相似。一种来自鸡肝线粒体(8)的超氧化物歧化酶每个分子含有 2.3 个锰原子,虽然它是四聚体,但其亚基分子量与细菌含锰酶相同。另一种是含有铁(每个分子约 1 个原子)而不是锰的,已从大肠杆菌中分离出来(9),是一种二聚体,其亚基大小相同(分子量 19,000)。已在各种需氧、厌氧和耐氧厌氧微生物中测量了超氧化物歧化酶活性水平(10)。从观察到的相关性来看,
Solvay是一家开创性的化学公司,其遗产源于苏打灰过程中的创始人欧内斯特·索尔维(Ernest Solvay)的关键创新,致力于通过其9,000多名员工的员工在全球范围内提供基本解决方案。自1863年以来,Solvay利用化学的力量创造了创新的,可持续的解决方案,以满足世界上最重要的需求,例如净化我们呼吸的空气和我们喝的空气,维护我们的食物供应,保护我们的健康和健康,保护我们的健康,生态友善的服装,从而创造了我们的汽车更具可持续性和更清洁和保护我们的房屋。作为一家世界领先的公司,在2022年净销售额为56亿欧元,以及在欧洲版本布鲁塞尔和巴黎(SOLB)上的上市,其坚定不移的承诺使到2050年的过渡到了碳中性的未来,强调了其对可持续性和公平和公平和公平过渡的奉献精神。有关Solvay的更多信息,请访问Solvay.com或在LinkedIn上关注Solvay。