健康影响研究所成立于 1980 年,是一家独立、公正的机动车排放对健康影响信息来源。健康影响研究所支持所有主要污染物的研究,包括受管制污染物(如一氧化碳、臭氧、二氧化氮和颗粒物)和不受管制污染物(如柴油发动机尾气、甲醇和醛类)。迄今为止,健康影响研究所已支持北美和欧洲机构的 220 多个项目,并发表了 140 多份研究报告。为了履行其作为机动车污染物对健康影响的独立信息来源的使命,该研究所还参与了特别审查和评估活动。通常,健康影响研究所的资金有一半来自美国环境保护署,另一半来自美国 28 家机动车和发动机制造商和营销商。有时,其他公共和私人组织的资金要么支持特殊项目,要么为健康影响研究所的研究提供部分资源。无论资金来源如何,健康影响研究所在确定研究重点和得出结论方面都拥有完全的自主权。独立董事会负责管理 HEI。研究所的健康研究和审查委员会服务于互补的科学目的,并吸纳杰出的科学家作为成员。HEI 资助的研究和评估结果已用于公共和私人决策。
任何科学学科面临的主要挑战之一就是确定某些观察到的相关性背后的原因。疫苗对疾病有效吗?提高工资会鼓励消费吗?大气中二氧化碳的增加是导致地球平均温度升高的原因吗?这些问题以及类似问题都可以用因果推理 (CI) 的工具来表述和分析 [1]。然而,尽管因果推理具有广泛的相关性,但当前涉及潜变量的 CI 算法通常无法分析具有少量节点的结构 [2-6]。鉴于贝尔定理 [8] 可以从概率分布与给定因果结构的兼容性来理解 [9, 10],量子非局域性领域 [7] 近年来将注意力集中在因果关系上。这一观点推动了量子关联的研究超越传统的二分场景(例如,参见 [ 11 – 15 ] 和评论 [ 16 ]),并推动了表征在这种因果场景中产生的量子和经典概率分布的技术的发展 [ 17 – 21 ]。一个特别成功的工具是膨胀方法 [ 22 – 24 ],它由一系列越来越严格的必要条件组成,可以通过线性或半定规划进行测试。尽管膨胀技术在量子非局域性领域内外都有广泛的适用性,但其可用的实现通常仅限于
$美元Afolu农业,林业和其他土地使用AR5 AR5评估报告CCUS二氧化碳捕获,利用和储存CH4甲烷CO碳单氧化碳CO2 CO2二氧化碳二氧化碳二氧化碳会议CSS水力发电库IMCCCC IMCCCC气候变化协调委员会INC最初的国家通信IPCC IPCC气候变化IPPU工业过程和产品使用的政府间及以下方 Environment mMt million metric tonnes MRV monitoring, reporting and verification N20 nitrous oxide NAP National Adaptation Plan NAPA National Adaptation Programme of Action NOx nitrous oxides NMVOC non-methane volatile organic compound NCCP National Climate Change Policy NDC Nationally Determined Contribution NPC National Planning Comission PFCs perfluorocarbons PA Paris Agreement PIF Policy and Institutions Facility REDD减少森林砍伐和森林退化可持续发展目标SF6硫磺Hexafluoride SNC第二个国家通信SO2国家通讯SO2有机化合物TNC联合国联合国联合国联合国联合国开发计划UNFCC联合国联合国联合国与气候变化的框架与现有的可变可再生能源WAM的框架
摘要:《联合国气候变化框架公约》要求世界各国报告其二氧化碳 (CO 2 ) 排放量。对这些报告的排放量进行独立核查是推进《巴黎协定》中商定的排放核算和减排措施的基石。在本文中,我们介绍了一种紧凑型星载成像光谱仪的概念和首次性能评估,其空间分辨率为 50 × 50 平方米,可为全球二氧化碳排放的“监测、核查和报告”(MVR)做出贡献。中型发电厂(1-10 MtCO 2 yr −1)的二氧化碳排放量占全球二氧化碳排放预算的很大一部分,目前其他星载任务尚未针对这些排放量。在本文中,我们表明,所提出的仪器概念能够解决来自此类局部源的排放羽流,这是获得相应的二氧化碳通量估算的第一步。通过辐射传输模拟,包括真实的仪器噪声模型和涵盖各种地球物理情景的全球试验集合,结果表明,在反演柱平均干空气 CO 2 摩尔分数 (XCO 2 ) 时,仪器噪声误差可以达到 1.1 ppm (1 σ)。尽管来自单个光谱窗口的信息量有限,光谱分辨率相对较粗,但大气气溶胶和卷云的散射可以在 XCO 2 反演中得到部分解释,偏差
工业排放点源的碳捕获和存储(CCS)是实现净为零二氧化碳(CO 2)目标的潜在工具之一。但是,发射点源和存储地层通常彼此遥远,这需要有能力的CO 2运输基础设施。虽然管道运输有望在CO 2的高和稳定流量的高成本中,但船舶运输可能更昂贵,但在运输数量和存储位置方面也更加灵活。在这里,我们提出了一个混合整数编程(MIP)模型,为CCS供应链设计问题(CCS-SCDP)提供决策支持,目的是最大程度地降低总供应链成本。我们将模型应用于四个未来的CO 2供应方案,从德国工业来源捕获CO 2,并将其带到挪威科尔斯内斯市的北极光卸载端口,以存放在海底地质地层中。我们的分析表明,如果年度捕获量增加,则总供应链成本的运输成本比例从22%下降到10%。对于低捕获量,基于船舶的解决方案更便宜,而离岸管道解决方案则最适合较大的捕获量。因此,基于管道的解决方案中规模经济的潜在收益必须与CCS供应链投资决策中的潜在锁定效应保持平衡。
溶解在水中的二氧化碳的量将取决于水源接触的碳酸钙和碳酸镁。某些地区的这些矿物质比其他地区要高得多。大量矿物质的水通常称为硬水。为什么去除气体的氧气是从水中去除的,因为它与金属反应并将氧化它接触的任何金属。与金属反应有关的氧气反应的两个主要行业是发电行业和半导体制造业。蒸汽发电厂会产生蒸汽,以创建力,以将一系列安装在轴上的叶片(类似于制造商类似)。随着轴旋转,它将机械能转换为电能。这些叶片是由金属制成的,容易氧化。如果涡轮叶片中的金属开始氧化,它们将被损坏并影响涡轮机的孔。半导体制造厂使用大量的水在经过不同的处理步骤时冲洗硅晶圆。晶圆可以通过40 - 50个单独的处理步骤进行,然后将冲洗一次,以去除该过程中使用的化学物质。氧将反应并氧化在集成电路中使用的金属。氧化物将影响电路和质量缺陷。目标溶解氧:•<1 ppb(零件十亿分)的集成电路•用于TFT显示的<50 ppb•用于发电厂二氧化碳水纯度的<10 ppb通常通过其传导能力来衡量。亨利定律:p = hx水中的离子将使水进行电子。 超纯水将具有很低的电导率,其水中几乎没有离子。 二氧化碳将与碳酸平衡存在,这将使水的电导率电离并增加。 离子交换树脂将去除离子,可用于移动二氧化碳。 随着二氧化碳水平的增加,使用机械方法而不是离子交换去除碳二二氧化碳变得更加经济。 通常,安装脱碳剂(又称DeGaser)以将溶解的二氧化碳从水中移动。 •目标二氧化碳<3 ppm如何从水中去除气体,以了解清除气体的机制,审查两种化学工程原理很重要。 这些原则将在下面简化。 亨利的法律气体每当与水接触时都会溶解在水中。 将溶于水的气体量与气体压力成正比。 这受到亨利定律的化学工程校长的约束。水中的离子将使水进行电子。超纯水将具有很低的电导率,其水中几乎没有离子。二氧化碳将与碳酸平衡存在,这将使水的电导率电离并增加。离子交换树脂将去除离子,可用于移动二氧化碳。随着二氧化碳水平的增加,使用机械方法而不是离子交换去除碳二二氧化碳变得更加经济。通常,安装脱碳剂(又称DeGaser)以将溶解的二氧化碳从水中移动。•目标二氧化碳<3 ppm如何从水中去除气体,以了解清除气体的机制,审查两种化学工程原理很重要。这些原则将在下面简化。亨利的法律气体每当与水接触时都会溶解在水中。将溶于水的气体量与气体压力成正比。这受到亨利定律的化学工程校长的约束。
在 EPRI,我们坚信我们的公益使命是为社会提供广泛的技术选择,以安全、可靠、经济实惠和环保的方式发电、输送和使用电力。展望未来,实现这一目标的最佳方式是通过研究、开发和示范方面的合作计划,使社会能够应对全球气候变化和水资源可持续性等极其重要的环境挑战。本期期刊包括关于两种重要的零碳发电技术的文章:可再生能源和核能。之前的版本涵盖了能源效率、先进煤炭、碳捕获和封存以及插电式混合动力汽车 (PHEV) 等技术。EPRI 最近的 Prism 分析(参见 www.epri.com)得出结论,社会将需要上述所有技术,以使电力部门能够满足日益增长的电力需求,同时减缓、停止并最终扭转其二氧化碳排放量的预计增长。但电力部门可以做的不仅仅是减少自身的排放。今年夏天,EPRI 发布了一份两卷报告,对插电式混合动力汽车对美国温室气体 (GHG) 排放和空气质量的影响进行了环境评估。该研究分析了九种情景,在这些情景中,插电式混合动力汽车在美国汽车市场中占有或多或少的份额,而电动汽车
摘要。在 24 名使用呼吸机的早产儿(平均胎龄 30.2 周)的连续测量中,将近红外光谱记录中二氧化碳引起的变化与通过 '33Xenon 清除率(全脑血流量(无穷大))估算的脑血流量变化进行了比较。在所有婴儿中,通过调整呼吸机设置获得不同的动脉二氧化碳张力水平(平均 4.4 kPa,范围 2.1-7.8),进行了三次测量。平均动脉血压自发变化,而动脉氧张力保持在正常范围内。在所有波长(904、845、805 和 775 nm)下,较高的动脉二氧化碳张力水平使 OD 增加,表明脑血管扩张。将数据转换为含氧和脱氧血红蛋白浓度的变化,支持了这一结论。发现脑血容量指数和全脑血流量(无穷大)平行增加(p < 0.0001)。细胞色素 aa3 的氧合水平随氧气输送的增加而增加(p < 0.0001)。然而,由于氧化细胞色素 aa3 和含氧血红蛋白信号之间的串扰,这一观察结果可能是人为的,因为这些信号在本实验设计中是紧密相关的。我们建议近红外光谱法可用于估计广泛动脉二氧化碳张力范围内的脑血容量指数/脑血流量-CO2 反应性。了解光路长度将使这一估计具有定量基础。(Pediatv Res 27:445-449,1990)
渔业部门面临着从生态系统角度确定有效管理的挑战,以减轻全球变暖潜能值 (GWP)。这项研究的主要重点是分析马尔代夫鱼类加工价值链中的资源利用率以及所涉及步骤的环境绩效。这项研究试图计算马尔代夫鱼类加工过程中的碳足迹和水足迹。采用快速市场链分析来收集数据。样本由斯里兰卡南部海岸的库达韦拉渔业社区案例研究组成。估算方法基于政府间气候变化专门委员会发布的编制温室气体清单的指南。研究表明,生产 1 公斤马尔代夫鱼需要 5 公斤生鱼。产生的废物被倾倒到海里。加工所用的能源是燃烧木柴。每公斤马尔代夫鱼需要 4 公斤椰子壳。因此,每公吨马尔代夫鱼产生 4.4 公吨二氧化碳当量。生鱼从近海运输到加工点的排放量估计为每吨马尔代夫鱼 70.484 吨二氧化碳当量。加工马尔代夫鱼的用水量估计为每公斤马尔代夫鱼 2.5-3 升。研究表明,柴油是马尔代夫鱼类价值链中二氧化碳的主要贡献者之一,并为碳足迹增加了额外的分数。因此,适当的收获后管理实践将有助于减轻全球变暖潜能值。
Clairity Technology Inc (Clairity) 正在考虑在内华达州南部设立其首个商业设施。Clairity 成立于 2022 年,总部位于加利福尼亚州卡尔弗城。Clairity 开发用于直接捕获大气中二氧化碳以去除二氧化碳的系统。Clairity 的技术具有碳负性和水正性,可为当地社区生产饮用水。Clairity 将部署首个端到端直接空气捕获和碳储存项目,该项目将共同为缺水社区生产饮用水,全部由单一供应商运营。这也将是内华达州首个直接空气捕获设施。该项目的额定能力为每年去除 2,500 吨二氧化碳和每天生产超过 1,000 升水,具有碳负性和水正性。该项目将展示 Clairity Process 的能源效率及其以低成本快速扩展的能力,同时完全由可再生能源提供动力。Clairity 正积极与区域合作伙伴合作以推进其项目目标,包括 NV Energy;南内华达州水务局 (SNWA);以及由 ASU 牵头、合作机构 UNLV 和 DRI 的西南可持续发展创新引擎 (SWSIE)。Clairity 正在寻求在该地区建立教育和劳动力发展伙伴关系,包括与 UNLV、CSN、DRI 和该地区的当地职业技术学院。该公司还考虑将亚利桑那州和犹他州作为该项目的潜在地点。来源:Clairity Technology Inc