直到今天,北欧和中欧国家住宅建筑的空间供热需求仍然主要由化石燃料(主要是天然气和石油)的燃烧来满足。因此,该部门在这些国家每年的能源相关二氧化碳排放量中占了很大一部分。可再生能源在供热部门渗透率低的一个原因是,最大的供热需求发生在冬季,而可再生能源的高生产率通常发生在夏季。为了克服这种季节性差异,本文提出了一种基于氢氧化钙转化为氧化钙和水的热化学反应的新型长期储存系统。该概念的基本思想是在夏季使用多余的电力(例如来自屋顶光伏系统的电力)来驱动吸热充电反应。然后可以将带电材料储存在环境温度下的简单容器中,并且可以无限期地保持化学势而不会损失能量。在冬季,通过进行放热逆反应释放的热能可满足建筑物的供热需求。与迄今为止分析过的季节性储存反应系统不同,该系统排放的是液态水而不是水蒸气,这在技术和能源上都增强了排放过程。此外,使用电能而不是太阳能进行充电,可以灵活调整储存的运行时间。这样,系统就可以运行,这样在充电过程中必然产生的废热就可以完全用于满足夏季的生活热水生产。这种新发现的工作原理可以显著提高系统的存储效率。对能量平衡的详细分析,结合第一个与建筑物集成的案例研究,表明潜在的存储效率可以达到 96%。简而言之,本文提出了一种全新的技术概念,通过具有成本效益的长期能源存储将电力和热力部门结合起来,并评估了其在住宅建筑中的应用潜力。
摘要钢铁行业产生的各种废物,该矿石一直是最被回收和回收的对象。Alto-Forno炉渣在回收中得到了很好的定义,但是,动作的矿渣反过来已经发现很难被正确享受,尤其是在其巨大的基本性方面。根据巴西钢铁学院的数据,2011年至2020年之间在巴西的钢铁生产约为3.37亿吨。这平均产生了约4000万吨的Scum Scoria。在当前工作中,提出了在构造中使用范围范围的可行性。由于其化学不稳定性和可降解的物理结构,钢的Scoria被认为是钢制造的残留物和该过程的副产品,因此不建议直接在建造中进行直接使用,因为其降解,膨胀性和低电阻会损害最终产品的稳定性。为此,开发了浮渣治疗分析,其中进行了氢氧化和碳化过程。测试以评估捕获烟雾2的方法,并将氧化物(CAO,MGO)稳定到aciaria的浮渣中,将它们变成碳酸盐,改善其化学和物理稳定性,从而实现这种废物的再利用和可回收性。关键字:钢渣;炉渣的碳酸化;绑架碳;钢废物的回收;生态结构。钢铁制造商简介钢生产过程中产生的炉渣大部分被丢弃。该矿渣主要由氧化钙(CAO)组成,当暴露于环境时,在这种形成的氢氧化钙中与水分反应,CA(OH)2。像CA(OH)2一样,耐药性比CAO本身较低,并且在形成时会导致炉渣膨胀,这种化学现象会导致机械耐药性下降,并使该材料用于构造。因为他们必须丢弃这些