图 2. 在室温下收集了“原始”h-BN/Cu 箔的 Cu 2p (a)、O 1s (b)、N 1s (c) 和 B 1s (d) 的 XPS 图像,随后在 13 Pa 氢气分压下进行 APXPS 图像(绿色),最后在 13 Pa 氢气分压下进行等离子体暴露(蓝色)。典型的 SEM 图像是在等离子体暴露前(e)和暴露后(f)收集的 h-BN/Cu 叠层,分别使用 2 nA 和 1.5 nA 束流,使用相同的能量(3kV)和检测器设置。
用电迁移应力法研究了具有自对准氧化铜钝化层的等离子刻蚀铜线的可靠性。通过等离子氧化制备氧化钝化层,覆盖整个裸露的铜线,防止环境条件下表面氧化。空洞的形成和生长过程反映了线路断线机理。用光学显微镜监测了由晶界耗尽和晶粒变薄形成的空洞,测量了线路故障时间与线宽和电流密度的关系。增加氧化钝化层会缩短寿命,因为传热和铜扩散不良会加速空洞的形成和生长。窄线比宽线具有更长的寿命,因为晶界较少,可供磁通发散形成空洞
氧化铜因其半导体性质、高化学稳定性和经济效益而被确立为技术中的重要化合物。这些特性使其成为储能应用的良好候选材料。此外,由于其独特的特性,例如高功率、长循环寿命和环保性,超级电容器(电池和传统电容器之间的互补装置)的发展受到了广泛关注。此外,氧化铜引起了人们对制备可用于超级电容器制备的适用正极的兴趣。同时,氧化铜容易与极化液体和聚合物混合,并且具有相对稳定的化学和物理性质。氧化铜的电化学特性取决于形态,在这些装置中可以优化电极材料的适当结构设计。在这篇综述中,我们将探讨氧化铜的合成及其作为阴极材料的氧化还原机理,以及各种氧化铜化合物在制备高性能超级电容器中的应用。
通常可以观察到,已将回忆设备视为非挥发性半导体记忆(NVSM)设备,逻辑操作或神经形态计算的合适结构[1]。与典型的NVSM设备相比,已经选择了具有简单设备体系结构,快速开关属性,低功耗级别或出色的可扩展性的将来的内存应用程序的电阻随机存储器(RRAM)设备[2-4]。到目前为止,已经提出了基于几种介电和导电材料的不同Ar散布[5-7]。但是,所有这些设备的瓶颈都是大型操作电压或固定率变质。过渡金属氧化物,例如氧化钛(Tio X)[8],氧化镍(Nio X)[9],氧化锌(ZnO)[10]或氧化物(HFO X)[11,12],已被广泛检查用于记忆应用。在这些材料中,氧化铜(CUO)也可以表现出出色的电阻转换(RS)特征[13]。作为一种无毒的,互补的金属氧化物半导体(CMOS)兼容和丰富的地球材料,铜(CU)已被广泛用于超大级构成(ULSI)设备中。因此,作为集成电路处理序列中最常见的导电膜之一,基于CU的设备被视为在半导体设备制造中是相关的候选者。CUO膜可以使用几种方法,例如分子束外延(MBE)[14],化学蒸气沉积
S. Krobthong A,K。Umma B,T。Rungsawang A,T。Mirian A,S。Wongrerkdee A,*,S。Nilphai c,*,K。Hongsith D,S。S. Choopun D,S。Wongrerkdee E,C.Raktham F,P. p. pimphag g,P。萨恩校园,纳洪病原体73140,泰国b科学系科学与农业技术系,拉贾马加拉科技大学兰纳大学兰纳大学,李·梅斯,泰国C物理学计划,科学技术系,泰国科学和科学系,自由艺术与科学学院,自由艺术和科学材料科学,Roi et Rajabhat University,Roi et roi and roi I Universitiat and roi Intact et 45120科科,朝鲜迈大学,夏安格·梅50200,泰国E工程学院,拉贾曼加拉技术大学,拉纳·塔克(Lanna Tak),塔克(Lanna Tak),塔克(Lanna tak),泰国(TAK 63000),泰国f教育学院,Uttaradit Rajabhat University,Uttaradit Uttaradit Uttaradit 53000,泰国泰国Gibers The thailand thailand thailand thailand thailand ththand thate in thailand ththand phits thit the phits phits thith the金属氧化物半导体的合成由于其在电子,光电子,催化和光伏电场等领域的广泛应用而引起了很大的关注。这项研究介绍了在不同的施加电压下通过两种探针电化学过程在蒸馏水中合成蒸馏水中的铜纳米颗粒(NP)。合成的氧化铜NP表现出从光到深棕色的色谱,表明蒸馏水中氧化铜的形成。利用tyndall效应的初步观察和红色激光证实了溶液的胶体性质。氧化铜增强了这些应用的效率,准确性,耐用性和响应时间。光致发光排放突出了合成氧化铜NP的半导体特性。氧化铜NP在较低的施加电压下表现出很小的量子点(QD),而较高的电压产生的尺寸较大。戒指样图案的出现表明了多晶结构,通过选定的区域电子衍射分析进一步证实了多晶的结构,从而证实了在低压下Cu 2 O的结晶结构,在较高的电压下证实了CUO。因此,这项研究证明了使用两种探针电化学过程合成氧化铜的直接方法,并通过调节施加的电压来产生QD和NP结构。(2024年10月14日收到; 2025年1月8日接受)关键词:氧化铜,电化学过程,纳米颗粒,量子点1.引入具有显着导电性能的金属氧化物半导体(MOS)已被广泛研究用于不同的应用。氧化铜是一种特别有趣的MOS,通常在各种领域中使用,包括传感器,催化剂,导电材料,水纯化系统,能源储能,抗菌剂和光伏电源[1]。但是,传统制备的氧化铜的粒径相对较大,在控制特定特性方面面临着挑战。减少纳米结构材料的大小为
用于热能存储 (TES) 的相变材料 (PCM) 是一个新兴的研究领域,由于其对科学和技术领域的潜在影响而受到广泛关注。它有利于太阳能、智能纺织品、传热介质和智能建筑等各个研究和应用领域。1 – 4 LHTES 因其优异的相变行为 5 – 7 和高储热能力而成为该领域最有前途的方法。8,9 到目前为止,用于 LHTES 的相变材料 (PCM) 已在建筑储能领域得到广泛研究,例如建筑保温墙体、10 相变水泥板、11 太阳能空间冷却和建筑物供暖应用。12 在所有类型的 PCM 中,有机 PCM 具有理想的特性,包括合适的熔化温度、可忽略的过冷
1印度Sriperumbudur 602117 Sri Venkateswara工程学院应用化学系; anandhavelu@svce.ac.in(A.S。); anandababu@svce.ac.in(A.B.S.)2印度技术学院化学工程系,印度坎迪502285,印度; CH24IPDF15@IITH.AC.IN 3材料工程,RWTH Aachen University,52062 Aachen,Germany; abbishek.sridharan@rwth-aachen.de 4生物医学工程系,KPR工程技术学院,哥印拜陀641407,印度; swathy.m@kpriet.ac.in 5化学系,国王沙特大学理学院 Box 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。 工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.com2印度技术学院化学工程系,印度坎迪502285,印度; CH24IPDF15@IITH.AC.IN 3材料工程,RWTH Aachen University,52062 Aachen,Germany; abbishek.sridharan@rwth-aachen.de 4生物医学工程系,KPR工程技术学院,哥印拜陀641407,印度; swathy.m@kpriet.ac.in 5化学系,国王沙特大学理学院Box 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。 工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.comBox 2455,Riyadh 11451,沙特阿拉伯; almansor@ksu.edu.sa 6化学系,R.M.D。工程学院,印度Tiruvallur 601206; subha.snh@rmd.ac.in 7电子和电气工程部,东guk大学 - 欧洲共和国,首尔04620; hyunseokk@dongguk.edu *通信:v.j.dhanasekaran@gmail.com