容器式 NAS ® 电池由六个模块组成,每个模块有 192 个电池。NAS ® 电池单元由钠作为负极,硫作为正极组成。β-氧化铝陶瓷管用作电解质,只允许钠离子通过。放电时,钠被氧化,硫被还原形成多硫化物 (Na 2 SX)。充电步骤再次回收金属钠和元素硫。
ChemX 专注于艾尔半岛项目的勘探,包括 2021 年 6 月从 Archer 收购的 Kimba Kaolin/Halloysite 项目和 Jamieson Tank 锰项目,同时还收购了专有的高纯度氧化铝 (HPA) 加工技术,该技术将在完成 IPO 并进入澳大利亚证券交易所正式上市后,寻求建立一个试验工厂。
图5。可以将不同的方法用于过滤器上的代表性测量区域;至少应考虑20个计数区域或计数字段。这些方法可以用于不同直径和材料的过滤器(例如氧化铝,氧化硅,PTFE)。示例a)代表四分之一的过滤器; b)表示四个轴的横截面c)表示螺旋组件; d)代表一个随机组件。
34321 al I i i i i i i i i i i i d d(b i)(al i)1344 28 1 500 g 430 p t a 28182010 18 RT 34321活化(基本)(氧化铝)1344-28-1 500 gms 430 Part a 28182010 18 rt
坚固可靠的试管,适用于冷冻、冷却和室温粉碎 可进行 0°C 至 4°C 等低温控制粉碎 可在液氮条件下使用的一次性塑料试管 从 2ml 到最大 50ml 试管,可针对每个样品体积进行最佳粉碎 材料种类繁多(树脂、聚四氟乙烯、氧化铝、玛瑙、氧化锆、氮化硅、铁、碳化钨、不锈钢、钛等)
摘要:这项工作研究了有吸引力的聚合物融化中的纳米颗粒(NP)扩散,并揭示了两种不同的动态模式:车辆和核心 - 壳。通过扩散氧化铝NP(R np = 6.5 nm)和二氧化硅NP(R NP = 8.3和26.2 nm)中的各种分子量(14-1220 kDa)的聚(2-乙烯基吡啶)融化,我们检查了R np,Polymer size(R g)和表面化学的影响。使用飞行时间二级离子质谱和三层样品,我们测量横截面纳米颗粒浓度曲线作为退火时间的函数,并提取纳米颗粒扩散系数。小二氧化硅NP(r g / r np = 0.12 - 3.6)显示核心 - 壳行为,而氧化铝NP(r g / r np = 0.50 - 4.6)急剧差异,聚合物分子量的增加,与理论上预测的车辆扩散保持一致。从核心 - 壳到车辆扩散的过渡是分子量增加和较弱的NP/聚合物吸引力的结果,并促进了单体解吸时间的估计值。■简介
— 键合过程中铜 (Cu) 箔的氧化会使熔化温度从 1,083°C 降低到 1,065°C — 最大金属化厚度为 1 毫米 — 陶瓷的两侧都必须有金属化层 — 例如氧化铝 (Al 2 O 3 )、氮化铝 (AlN) 和氧化锆 (ZrO 2 ) 掺杂的高性能基板 (HPS)。 o 活性金属键合 (AMB)
空间应用中心 (ISRO) 从事微波集成电路制造,用于通信、遥感和导航有效载荷。SAC 开发了使用磁控溅射技术在氧化铝基板的两侧(顶部和底部)进行 Cr-Cu-Au(铬-铜-金)金属化的工艺。MIC 制造的基材是介电陶瓷,即氧化铝,将在其上进行金属化以进行 MIC 图案化。
对于这个项目,这些挑战本来可以在各种蚀刻化学中遇到。当前用于等离子蚀刻铝的气体为BC13,SICL4,CC14,CL2,BBR3,HBR和BR2 [1,4]。这些气体都是剧毒或致癌的。四胆碱硅不被认为是致癌物,而是毒性。这是选择SICL4作为该项目的蚀刻气体的主要原因之一。SICL4的另一个优点是,它增加了铝对光抗抗命天的选择性。使用SICL4作为唯一的蚀刻气体时,血浆中的过量电弧可能以相对较低的功率发生(<100瓦)发生,因此需要稀释剂来防止这种弧形。这样的稀释剂不仅可以减少等离子体中的弧菌,而且还提高了光膜天固醇的选择性是氦气[2]。使用SICL4和高功率(300瓦)的SICL4和Argon的混合物来完成氧化铝的突破。氩气,是因为其离子很重,因此在溅射过程中对表面造成了更大的损害。SIC14通过减少血浆气氛中的水分来充当水清除剂,从而防止了氧化铝的进一步生长[1]。