纳米技术和光子学领域的最新进展为开发新一代灵活、便携、多功能和高性能光纤传感器提供了可能性,例如基于有损模式谐振 (LMR) 的传感器。由于其灵活性和相对较高的灵敏度,这种新方法在过去 20 年中应运而生,并发现了许多应用,如折射率 (RI) [ 1 ]、电压 [ 2 ]、pH 值 [ 3 ]、湿度 [ 4 ] 和化学检测 [ 5 , 6 ]。此外,由于 RI 灵敏度高,基于 LMR 效应的无标记生物传感器的研究也已有大量报道 [ 7 , 8 ]。这种光学效应发生在光纤上的薄膜中。然而,必须满足基底(光纤)、薄覆盖层和外部介质的介电常数的特定条件。一般来说,薄膜介电常数的实部必须为正,同时其幅度要高于其虚部和分析物的介电常数 [ 7 ]。因此,要获得 LMR,需要选择合适的光纤覆盖材料。许多薄膜材料沉积在石英玻璃上时可以获得 LMR。这些材料包括半导体和金属氧化物或氮化物(氧化铟镓锌 [9]、氮化硅 [10]、氧化铟锡 (ITO) [11]、掺氟氧化锡 (FTO) [12]、氧化锡 [13]、氧化锌 [9, 14]、氧化铟 [15]、氧化钛 [16],以及氧化铪、氧化锆和氧化钽 [17]、类金刚石碳膜 (DLC) [18] 和各种聚合物 [3])。其中一些材料,例如 ITO [19-21] 和 FTO [12],由于其独特的性能,例如良好的电导率和合适的带隙 [22],已被报道能够在光学和电化学两个领域发挥作用(EC)传感器的询问是可以同时进行的。由于多个
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。
在光学和电化学等多个领域工作的传感器具有使生物传感比在单一领域工作的传感器更有效的特性。为了将这些领域结合到一个传感设备中,需要提供一组特定特性的材料。本文讨论了氟掺杂氧化锡 (FTO) 薄膜,它具有光学功能以引导损耗模式,同时具有电化学功能,即作为工作电极的导电材料。分析了基于 FTO 的光纤损耗模式谐振 (LMR) 传感器在光学和电化学领域的性能。此外,为了增强传感器的适用性,还开发了类似探针的反射配置。研究发现,FTO 可以被视为其他薄导电氧化物 (TCO) 的有前途的替代品,例如氧化铟锡 (ITO),它迄今为止经常应用于各种双域传感概念中。在光学领域,FTO-LMR 传感器对外部折射率 (RI) 的灵敏度在 1.33 – 1.40 RIU 的 RI 范围内达到 450 nm/RIU。反过来,在电化学领域,1,1 ′-二茂铁二甲醇溶液中 FTO 电极的响应已达到 RedOx 电流低峰峰分离。与 ITO-LMR 传感器相比,FTO-LMR 传感器在很宽的电位范围内表现出施加电位对 LMR 波长偏移的显著影响。使用链霉亲和素作为目标生物材料表明,FTO-LMR 方法的无标记生物传感应用是可能的。双域功能允许在两个域中接收到的读数之间进行交叉验证,并且在应用跨域相互作用时可以增强光学灵敏度。