材料上的特性。15最近,多层材料在表面工程社区中引起了广泛的关注,复合电极的制造也广泛用于LM电极处理。这还涉及增强电极材料的表面和界面,例如,减少金属颗粒的大小,不合适的多孔或分层结构,并与各种纳米颗粒进行修改或功能化表面(例如,,金属,金属氧化物,碳材料和离子/电子导电聚合物)。16 - 19虽然一项重要的研究集中在界面模式cation在改善金属化lms的能量存储和电性能中的作用,但它在自我修复特性方面已被很大程度上忽略了。由于其出色的电绝缘层和高导热率,可以将金属氧化物连接到聚丙烯LMS的表面上,以通过蒸气沉积形成复合的绝缘培养基。该方法不仅在适度地增加了复合lms的相对介电常数,而且在显着增强了电容器核心的热有效性方面。20,21尽管热量的快速耗散是由于电容器的介电损失或自我修复而产生的,但据信复合LMS可以防止在自我控制点附近介电lm的层间粘附,从而在自我控制过程中发挥隔离功能。22,23
1 米尼奥大学和波尔图大学物理中心 (CF-UM-UP),米尼奥大学,Campus de Gualtar,4710-057 Braga,葡萄牙 2 材料和新兴技术物理实验室,LapMET,米尼奥大学,4710-057 Braga,葡萄牙 3 NaMLab gGmbH,Noethnitzer Str. 64a,01187 德累斯顿,德国 4 Components Research,英特尔公司,Hillsboro,OR,97124 美国 5 SPEC,CEA,CNRS,U niv ersit ´ e Paris-Saclay,CEA Saclay,91191 Gif-sur-Yvette,法国 6 IBM Research Zurich,S ¨ aumerstrasse 4,8803 Ru ¨ sc hlik on 瑞士 7 电气与信息技术,隆德大学,Box 118,隆德,22 100 瑞典 8 NanoLund,隆德大学,Box 118,隆德,22 100 瑞典 9 材料科学与工程系和校际半导体研究中心,首尔国立大学工程学院,首尔,08826 韩国 10 罗格斯新兴材料中心和物理与天文系,新泽西州皮斯卡塔韦08854,美国 11 三星先进技术学院 (SAIT) 设备研究中心,水原,16678 大韩民国 12 格勒诺布尔阿尔卑斯大学,CEA,LETI,F-38000 格勒诺布尔,法国 13 Helmholtz-Zentrum Berlin fu ě r Materialien und Energie,Hahn-Meitner-Platz 1,Berlin 14109,德国 14国家科学研究中心 DEMOKRITOS, 15341, 雅典, 希腊
ZrO 2 和 HfO 2 NC 均用作光学活性镧系元素离子(例如铕)的主体。1,14-18 氟化物(例如 NaYF 4 和 NaGdF 4 )是另一类广泛用作镧系元素主体的纳米晶体,用于上转换和下转换。19-23 在氟化物体系中,合成工艺已经很成熟,可以在纳米晶体内精确定位掺杂剂,并在掺杂核上生长未掺杂的壳。后者产生核/壳结构,这在半导体纳米晶体(量子点)领域是首创的,用于防止激发电子和空穴与表面陷阱相互作用。24、25 同样,壳层保护镧系元素免受表面效应的影响,从而提高上转换和下转换过程的量子效率。 26 此外,在镧系元素掺杂的氟化物的情况下,多层结构可提供受控的能量级联。27 更高的量子效率加上较长的寿命使其可用于时间门控荧光成像等。15、28 由于生产具有复杂(例如核/壳)结构的胶体稳定氧化物纳米晶体的合成挑战,氧化物主体的使用范围较窄。29 但是,氧化物主体的化学性质更稳定,而氟化物可溶解在高度稀释的水介质中。30
可耐醚电解质和高反应性锂金属阳极仍然限制了Li - S电池的商业应用。在LI - S细胞系统中,最常用的电解质溶剂是醚溶剂,例如二甲氧基乙烷(DME)和1,3-二氧烷(DOL),它们具有非常低的灰点(对于DME 6和1°C,DME 6和1°C的DOL 7)和高挥发性。这些醚电解质溶剂的这些特征确定使用Li - S细胞有很大的安全风险。对于反应性锂金属阳极,它可以很容易地与Li - S细胞中的基于醚的电解质和可溶性中间产物 - des des反应,并立即形成锂金属阳极表面上的固体电解质相(SEI)层。8不幸的是,SEI层倾向于不稳定和脆弱,这会导致严重的不可逆转能力降解。更平均,锂阳极的非均匀电化学溶解/沉积将导致锂树突的形成,这可以穿透分离器并引起严重的安全危害。为了解决上述问题,已经在更安全的电解质上为LI - S电池(例如固体电解质,离子液体,高浓度电解质,uorated溶剂和AME阻燃剂)进行了大量出色的工作。尽管这些作品取得了出色的改进,但它们也具有明显的缺陷,例如界面兼容性差和复杂的制备过程(固体电解质),9
ZR802G 转换器采用数字显示屏,除了显示氧气浓度外,还显示电池温度和电池电动势,并包括人机界面 (HMI),提供简便的触摸屏操作。该分析仪最适合监测大、小锅炉、各种工业炉和燃烧设备中燃烧气体的氧气浓度,或用于低氧燃烧的控制。分离式和集成式氧化锆高温湿度分析仪用于在使用电加热器或热气作为热源的干燥机中连续测量热气的湿度。它们还可用于加湿器和干燥机中的各种制造应用中,用于湿度测量和控制。它们可以帮助提高这些应用领域的生产力。
摘要:纳米晶氧化铝-氧化锆基共晶陶瓷是用高能束制备的,由超细、三维缠结的单晶域组成,是一类特殊的共晶氧化物,具有极高的高温力学性能,如强度和韧性以及抗蠕变性。本文旨在全面综述氧化铝-氧化锆基共晶陶瓷的基本原理、先进的凝固工艺、微观结构和力学性能,特别关注纳米晶尺度上的技术现状。首先根据先前报道的模型介绍了耦合共晶生长的一些基本原理,然后简要介绍了凝固技术和从工艺变量控制凝固行为的策略。然后,从不同层次尺度阐明纳米共晶结构的微观结构形成,并详细讨论硬度、弯曲和拉伸强度、断裂韧性和耐磨性等机械性能,以进行比较研究。利用高能束工艺已经生产出具有独特微观结构和成分特征的纳米氧化铝-氧化锆基共晶陶瓷,在许多情况下,与传统共晶陶瓷相比,机械性能有显著改善。
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
摘要:HfO 2 中铁电性的发现引起了人们对其在存储器和逻辑中的应用的极大兴趣,因为它具有 CMOS 兼容性和可扩展性。使用铁电 HfO 2 的器件正在被研究;例如,铁电场效应晶体管 (FEFET) 是下一代存储器技术的主要候选者之一,因为它具有面积小、能效高和运行速度快等优点。在 FEFET 中,铁电层沉积在 Si 上,界面处不可避免地会形成厚度约为 1 nm 的 SiO 2 层。该界面层 (IL) 增加了切换极化和写入存储器所需的栅极电压,从而增加了操作 FEFET 所需的能量,并使该技术与逻辑电路不兼容。本研究结果表明,铁电 Hf 0.5 Zr 0.5 O 2 基金属氧化物半导体 (MOS) 结构中的 Pt/Ti/薄 TiN 栅极电极可以远程清除 IL 中的氧气,将其减薄至约 0.5 纳米。IL 的减少显著降低了铁电极化切换电压,同时剩余极化强度增加约 2 倍,极化切换突变度增加约 3 倍,这与密度泛函理论 (DFT) 计算结果一致,该计算模拟了 IL 层在栅极堆栈静电中的作用。剩余极化强度和极化切换突变度的大幅增加与清除过程中的氧扩散相一致,氧扩散减少了 HZO 层中的氧空位,从而使部分 HZO 晶粒的极化脱钉扎。关键词:铁电性、远程清除、夹层、EOT 减少、极化■ 介绍
美国陶瓷学会公报涵盖学会及其会员的新闻和活动,包括陶瓷界感兴趣的项目,并提供有关陶瓷技术各个方面的最新信息,包括研发、制造、工程和营销。美国陶瓷学会对本出版物的社论、文章和广告部分信息的准确性不承担任何责任。读者应独立评估本出版物的社论、文章和广告部分中任何陈述的准确性。美国陶瓷学会公报(ISSN 编号 0002-7812)。©2022。美国印刷。ACerS Bulletin 每月出版一次(二月、七月和十一月除外),作为印刷版和电子版“双媒体”杂志(www.ceramics.org)。编辑和订阅办公室:550 Polaris Parkway, Suite 510, Westerville, OH 43082-7045。美国陶瓷学会会员需支付订阅费。非会员印刷版订阅费率(包括在线访问):美国和加拿大,1 年 135 美元;国际,1 年 150 美元。*费率包括运费。国际转寄服务是美国和加拿大以外的标准服务。 *国际非会员也可以选择以 100 美元的价格订阅纯电子版电子邮件递送服务。单期,1 月至 10 月/11 月:会员每期 6 美元;非会员每期 15 美元。12 月刊( ceramicSOURC
目前的研究旨在通过使用电泳沉积来表征钛底物上羟基磷灰石,锆和氧化石墨烯纳米复合材料。在第一阶段,除了表征创建的复合涂层外,通过使用扫描电子显微镜(SEM)评估了创建涂层的厚度和均匀性。另外,通过元素分析研究了纳米粉末颗粒的分布。在第二阶段,通过使用X射线衍射分析,绘制并研究了涂层中使用的材料的位置。在第三阶段,为了评估在向羟基磷灰石中添加纳米颗粒而导致的涂层腐蚀行为,并将其与非涂层样品进行了比较,对化学偏振形式的电化学分析进行了比较,并与绘制相关图表进行了分析。最后,在第四阶段,进行了涂层上大肠杆菌和葡萄球菌细菌的抗菌测试,并与未涂层的合金样品进行了比较。腐蚀测试结果表明,使用纳米复合涂层会导致表面耐腐蚀性的增加。抗菌测试结果表明,使用纳米复合涂料可有效地降低表面细菌的生长。