摘要 本研究通过实验和数值模拟研究了双层高硬度钢复合附加装甲在 14.5 mm 穿甲弹以 900 m/s 速度冲击下的抗弹性能。本研究中的装甲系统由复合附加装甲和背板组成。复合附加装甲包括先进的氧化铝-氧化锆陶瓷,其采用 300 MPa 高压冷等静压 (CIP) 工艺制备,并在 1700 oC 高温下烧结。将烧结的先进陶瓷颗粒通过铸造工艺与聚氨酯橡胶结合。高硬度钢板安装于复合附加装甲上,复合附加装甲设计为背板,厚度为 6.0 mm 的双层,选用 Bisalloy HHA500。
当吸湿盐(MgSO4,xH2O)分布在具有足够的层次化孔隙率的氧化锆陶瓷基质中时,其用于热化学储能的性能可以大大提高。基质材料采用增材制造技术(robocasting)与造孔剂添加和部分烧结相结合的方式制造,以获得三级孔隙率(孔径分布在 3 个十年内,从 200 纳米到 200 微米)。然后通过用水性盐溶液渗透基质材料来获得复合材料。孔隙率使基质材料中储存的盐量及其与水蒸气的可及性最大化,从而产生潜在的高能量密度(高达 420 kWh·m -3 ),而不会在水合/脱水循环中损失效率。
工业必备设备 锅炉广泛应用于电力、制药、化学、陶瓷、造纸和纸浆等行业。近年来,随着能源成本的上升、环境法规的严格化和安全意识的增强,对锅炉高效运行、低排放运行和安全稳定运行的需求日益增长。提高锅炉效率、降低排放 为了确保空气和燃料以最佳比例燃烧、消除燃料浪费、净化废气,需要实时监测燃烧气体的氧浓度。氧化锆氧浓度分析仪ZR系列配备了使用寿命更长的氧传感器单元,能够高可靠性地测量氧浓度。烟气分析仪 SG700 可监测 NOx、SO2 和 CO2 等废气成分,以确保低排放运行。
固体氧化物燃料电池(SOFC)的低kV表征,该固体由Yttrium稳定氧化锆(YSZ)和镍组成。镍粒子创建一个充当电子途径的网络;但是,某些镍颗粒可能不会连接到基质。这些通常称为死尼克尔;表征它们在样本中的存在和数量很重要。使用低加速电压,可以通过电荷对比度识别死尼克。独特的三位一体检测系统用于识别T1检测器提供Z对比度的三个阶段(YSZ,镍和孔),然后将其用于区分DeadIckel与T2检测器图像中渗透镍的区分,从而提供了SE对比度。在评估该方法期间,已经表明,渗透和非渗透镍之间的对比随着电压的增加而降低。
识别和量化某些生物分子(如多巴胺、葡萄糖、酪氨酸和胆固醇等)的生物浓度已成为治疗许多相关疾病的医学诊断基础。在大多数情况下,这些生物分子在血液等生物流体中的浓度可作为生物标志物,对疾病治疗至关重要。另一方面,先进陶瓷是指氧化物(氧化铝、氧化锆)、非氧化物:(碳化物、硼化物、氮化物、硅化物)、复合材料(氧化物和非氧化物的颗粒增强组合)等。这篇评论文章讨论了使用金属和金属氧化物基先进陶瓷开发的电化学传感器领域的最新发展,重点介绍了过去五年该领域的发展。本文介绍了针对一些重要生物分子(如对乙酰氨基酚、葡萄糖和多巴胺等)的先进陶瓷电化学生物传感器的主要结果、重要发现和有趣的化学性质。
摘要:本文介绍了使用不同高介电常数 (高 k) 栅极介电材料的双栅极 (DG) 和栅极环绕纳米线 (GAA) MOSFET 的电气行为。为了研究高 k 介电材料对 DG 和 GAA 的影响,使用 Atlas Silvaco TCAD 工具模拟器件并确定电气特性。本研究选择的高 k 材料是氮化硅 (Si3N4)、氧化铝 (Al2O3)、氧化锆 (ZrO2) 和氧化铪 (HfO2)。栅极介电材料在设计新型高性能纳米级电气器件方面发挥了重要作用。可以观察到,当接近更高的介电常数值时,导通电流增加,而亚阈值斜率 (SS) 阈值电压 (Vth) 和漏电流减少。可以观察到,与其他模拟介电材料相比,HfO2 对 DG 和 GAA MOSFET 都表现出最佳性能。
2021 年,Dentsply Sirona 将 ALD 以 Tessera 品牌推向市场 [11]。该材料专为全覆盖牙冠、嵌体/覆盖体和层压板 [12] 设计,由 90% 的 LDS 晶体和 5% 的 virgilite 组成(按体积计算)[10]。CEREC Tessera 在其块中使用两种主要晶体:virgilite 晶体 (Li0.5 Al0.5 Si2.5 O6),即锂铝硅酸盐,以及 LDS (Li2 Si2 O5) [13]。据制造商介绍,ALD 具有多种优势,包括快速结晶,仅需四分半钟即可完成,从而加快了制造过程。此外,它还可以加快釉烧速度,同时提供高美观度和抗弯强度。这些优势是通过一种独特的化学反应实现的,该化学反应将两种互补的晶体结构结合在含有 700 MPa 氧化锆的玻璃基质中 [11]。
为了降低欧姆损耗,电解质支持的固体氧化物燃料/电解池需要在高工作温度(> 800 °C)下工作,这是限制其商业化的主要因素之一。[1–3] 为了将工作温度降低到更具成本效益的范围(< 500 °C),人们进行了大量研究,以开发具有更高低温离子电导率的电解质。[4,5] 在这方面,掺杂钙钛矿体系(即 A 1–xA′xB1–yB′yO3–δ,其中 A′ 和 B′ 是异价掺杂剂)已成为氧离子导体的有希望的候选材料。例如,锶和镁共掺杂的LaGaO3由于其具有竞争力的离子电导率(600°C时> 0.01 S cm-1)和化学稳定性,被认为是氧化钇稳定氧化锆的极佳替代品。[6–8]但是,尽管具有这些诱人的特性,但很少有高性能替代品被发现[9,10],而且还没有系统地设计这类材料的方法。
摘要。航空燃气涡轮发动机的发展在很大程度上需要先进材料的开发。然而,这种复杂的开发过程是合理的,因为它具有系统级优势,如减轻重量、提高温度能力和/或减少冷却,而这些都提高了效率。高温陶瓷在这方面取得了长足的进步,陶瓷基复合材料 (CMC) 处于领先地位。CMC 分为非氧化物和氧化物基。这两类材料类型在高温推进应用中都有很高的潜力。典型的氧化物基材料基于氧化物纤维和氧化物基 (Ox-Ox)。一些最常见的氧化物子类别是氧化铝、氧化铍、二氧化铈和氧化锆陶瓷。这种基体复合材料用于燃气涡轮发动机的燃烧衬套和排气喷嘴等。然而,到目前为止,还没有对可用于此类应用的氧化物基 CMC 进行彻底的研究。本文重点评估了文献调查中可用的氧化物陶瓷基复合材料的机械和热性能。
纳米技术已被广泛引入包括牙科在内的许多领域,包括修复性牙科,在那里它为改善修复材料和程序的改善做出了巨大贡献。这项审查的目的是探索纳米技术在恢复性牙科中的各种应用。评论由两个部分组成。第一部分解决了回忆性抑制和回忆性的申请。目前的评论是旨在重点关注纳米材料的修复材料和其他治疗应用的第二部分。在用于增强修复材料的纳米颗粒中是碳,氧化锆,羟基磷灰石,二氧化钛,氧化铝,氧化铝和金纳米颗粒。此外,纳米技术的其他有希望的应用是用于超敏反应,保护性清漆,美白效果,药物输送和纳米骨质药,其中包括进行重大的牙齿维修和进行牙齿的牙齿重新定性程序。这些应用突出了纳米颗粒在修复牙科中的潜力;但是,仍然需要处理某些局限性。