SMA 型分析仪使用热气采样系统,通过将所有金属部件保持在露点以上的温度,以湿法测量烟气样品。这可防止酸性蒸汽在采样表面凝结。一旦进入传感器组件,进入的气体样品将被分成两个单独的加热通道。一个通道将样品转移到高度可靠的氧化锆传感器,在那里分析工艺气体的净氧含量。这款获得专利的 O 2 传感器包含一个内置加热器来调节其自身温度。另一个通道将样品转移到催化可燃物 CO e 传感器,在那里分析工艺气体的可燃物含量。当样品通过预热的混合室时,以固定速率添加稀释空气,以确保可重复且可靠的可燃物测量。稀释后的样品随后流入由两根 RTD 棒组成的 CO e 传感器。一根棒作为参考,另一根棒涂有催化剂,可氧化或燃烧棒表面的可燃物。催化 RTD 的温升(相对于参考 RTD)是 CO e 浓度的函数。
在二氧化硅 - 二氧化胶玻璃和玻璃陶瓷中研究了材料结构在Ag和TB 3+ /Yb 3+离子之间的能量转移中的作用。通过溶胶 - 凝胶和浸入涂层进行TB 3+和YB 3+掺杂的二氧化硅氧化锌层的制备,然后进行热退火。通过控制退火温度从700°C下的全无定形玻璃控制到1000°C的玻璃陶瓷来获得氧化锆纳米晶体的沉淀。由稀土掺杂的氧化氧化纳米晶体(四方或立方)的不同结构结构,并与TB 3+ /Yb 3+光学性质进行了研究。此外,在激发带的强度和宽泛的情况下,通过离子 - 交换引入Ag codoping,获得了明显的光致发光增强,覆盖了整个UV区域和紫罗兰色区域的一部分。Ag敏感的TB 3+ /Yb 3+掺杂的二氧化硅氧化循环玻璃陶瓷被证明是能源相关应用的潜在候选物,例如可见光和NIR光谱区域中太阳能电池,激光器和光电池(LED)的光谱转换层。
纳米结构的氧化锆和黄金膜(NS-AU/ZRO X)已被证明为具有非线性和滞后电气行为的特征,具有短期记忆和增强/抑郁活性。在这里,我们研究了调节纳米结构双层Au/Zro X膜的非线性行为的传导机制。尤其是,我们遵循Chua对综合系统的方法进行了研究,并分别对膜中的离子迁移和电子传输进行了建模。双层纳米结构系统所表现出的传导机制受到纳米形态的强烈影响,纳米形态由于电刺激而动态变化。沿微观结构中的瓶颈和边缘沿着强烈的本地电场和高迁移率促进了结构重排。电子传输是电极界面处的Schottky屏障和块状纳米材料中的Poole-Frenkel效应。在这里讨论了Poole-Frenkel效应的模型,以在高应用场机制中包括库仑陷阱的饱和;提出的模型已通过具有不同的扫描速度和不同温度(从300至200 K)的实验电压坡道进行了验证,以及功率指数参数分析。
摘要:氧化锆(ZRO 2)是一种良好且有前途的材料,由于其出色的化学和物理特性。在用于腐蚀保护层,磨损和氧化的涂料中,在光学应用(镜像,滤波器)中用于装饰组件,用于反伪造的解决方案和医疗应用。ZRO 2可以使用不同的沉积方法(例如物理蒸气沉积(PVD)或化学蒸气沉积(CVD))作为薄膜获得。这些技术是掌握的,但由于固有特性(高熔点,机械和耐化学性),它们不允许对这些涂层进行微纳米结构。本文描述的一种替代方法是Sol-Gel方法,该方法允许使用光学或纳米图形印刷术的无物理或化学蚀刻过程的ZRO 2层进行直接微纳米结构。在本文中,作者提出了一种完整且合适的ZRO 2 SOL-GEL方法,允许通过光学或纳米IMPRINT光刻来实现复杂的微纳米结构,以实现不同性质和形状的基材(尤其是非平面和箔材料的底物)。通过掩盖,胶体光刻和玻璃和塑料底物以及平面和弯曲的底物,通过掩盖,胶体光刻和纳米图光刻来呈现ZRO 2 Sol-Gel的合成以及微纳米结构过程。
在固体物理学和凝聚态物理学中,态密度 (DOS) 量化了所考虑材料中易被占据并具有确定能量的电子态的数量。只要知道色散关系,就可以计算出这个量。可以为各种各样的系统计算 DOS。某些量子系统由于其晶体结构而具有对称性,这简化了 DOS 的计算。总 DOS 是一个允许确定材料电子传导特性的参数。对于晶体中的每个原子,我们确定一个半径为的球体,在该球体内部,我们将电子密度投影到球谐函数(类型:s、p、d 或 f)上。部分 DOS 用于识别晶体中化学键的结构。使用 DFT(密度泛函理论)对单斜 ZrO 2 (m-ZrO 2 ) 的电荷密度和 DOS 进行了第一性原理研究,其中 m-GGA (TPSS) 函数用于交换关联势、伪势 (PP) 近似和 STO (斯莱特类型轨道) 作为集成在 ADF-BAND 代码中的基本函数。氧化锆 (ZrO 2 ) 是一种高 k 电介质 (k 25 和 E g 6 eV)。ZrO 2 是一种很有前途的高 k 电介质候选材料,可取代 SiO 2 作为 CMOS 中的栅极氧化物,因为它兼具出色的机械、热、化学和介电性能。
封面:X 射线显微镜对不同材料(包括地质材料、电气材料和高级材料)产生的图像选择(从顶部开始顺时针方向)。分割显示 100 毫米碳酸盐岩芯的岩性分类。使用蔡司 Xradia 520 Versa X 射线显微镜上的 FPX 探测器进行成像。此渲染图由 ORS Visual SI Advanced 创建。蔡司 Xradia 520 Versa 成像的手机相机镜头组件。棕色部分是内部断层扫描的叠加。使用蔡司 Xradia 810 Ultra 对固体氧化物燃料电池 (SOFC) 的一部分进行成像。可以看到 SOFC 的三层。多孔顶部部分是阴极,它是一种镧-锶-锰氧化物 (LSM) 组合物。LSM 网络已根据其局部厚度进行颜色标记。蓝色表示薄,红色表示厚。样品的中心是电解质,由氧化钇稳定氧化锆 (YSZ) 制成。在样品的这一部分,图像显示的不是固体 YSZ,而是 YSZ 中存在的空隙。一个空隙被标记为橙色,因为它还连接到电池下部的孔隙网络。底层是阳极,它是镍和 YSZ 的多孔复合材料。YSZ 为蓝色,镍为红色。
哈里亚纳邦,印度摘要 - 牙科领域的形状记忆聚合物的出现,在很大程度上简化了工作。在诸如Archwires和Arigners(Archwires and Aligners)等各种正畸应用中的用法也已被证明至关重要。已知的合金,例如氧化锆和智能 - 密集是形状记忆材料的示例,在牙科中表现出智能行为。随着材料科学开发和应用这些智能材料的趋势的日益增加,这些材料可能会允许开创性的牙科疗法,并具有显着增强的治疗临床结果。可以将对准器的历史记录追踪回凯斯林,凯斯林(Kesling)描述了牙齿最终的牙齿定位器以及1945年的有效固定装置,然后是1964年的Nahoum2,开发了真空塑料的“牙齿轮廓”设备,这些设备是热塑性的,最适合牙齿使用。他开发了使用连续电器的概念,并进行了较小的增量变化,重大更正驾驶室是基于流行的Essix设备和Invisalign的构建而形成的。本文的目的是回顾形状记忆对准器的历史以及经过验证的研究,以及它将在正畸领域应用。本文还通过库存中的智能材料代替常规材料来讨论患者以及牙医的潜在好处。索引项 - 对准器,形状内存,CAT,SMP。
二氧化钛 (TiO 2 ) 纳米管已被用于增强牙科材料的机械和生物性能。氧化钇稳定四方氧化锆多晶体 (Y-TZP) 已越来越多地用于牙科,作为牙冠和固定部分假体的子结构。除了最佳临床效果外,Y-TZP 还容易出现故障,因为制造过程中引入了与微结构相关的缺陷,可能会降低其结构和临床可靠性。本研究的目的是评估毛坯制造工艺的作用以及通过添加 TiO 2 纳米管(体积为 0%、1%、2% 和 5%)在控制所有制造步骤的同时对其原始成分进行修改。对材料进行了双轴弯曲强度试验、扫描电子显微镜 (SEM) 断口定性分析、场发射 SEM 微观结构评估和 X 射线衍射。对弯曲强度值进行了方差分析、Tukey (α = 0.05) 和威布尔统计。对晶粒尺寸值进行了 Kruskal-Wallis 和 Dunn 检验 (α = 0.05)。结果的亮点包括,对于实验性 Y-TZP,添加 2% vol TiO 2 纳米管陶瓷的弯曲强度值为 577 MPa,威布尔模量 (m) 为 8.1。在不同混合物中添加 TiO 2 纳米管会影响实验 Y-TZP 性能,导致弯曲强度降低,尽管它们表现出比商用 Y-TZP 更高的 m。纳米管还导致晶粒尺寸更大、孔隙更多以及单斜相略有增加,从而影响 Y-TZP 的微观结构。Y-TZP 毛坯制造控制以及 TiO 2 纳米管的添加导致更高的 m 值,因此结构可靠性更高。
燃料电池可能是将燃料转化为电能的最有效、最清洁的方式之一,因为它们避免了化学能转化为热能和热能转化为机械能的步骤。固体氧化物燃料电池 (SOFC) 是一种燃料电池,通常在 500 至 1000 C 之间运行。SOFC 中使用的标准材料是:氧化钇稳定氧化锆 (YSZ) 作为电解质,镍 - YSZ 金属陶瓷作为燃料电极,镧锶锰氧化物 (LSM) - YSZ 复合材料作为氧电极。1 尽管针对三种主要组件中的每一种都提出了多种具有增强初始性能的新型材料选择,但上述标准材料仍然是首选,因为它们在长期运行中具有耐用性。 2 例如,其他氧电极材料如镧锶钴铁氧体 (LSCF) 存在一些缺点,包括化学反应性和由于热膨胀系数 (TEC) 与标准 YSZ 的差异而导致的匹配性差。为此,已经提出了各种策略来改进标准氧电极。对于 LSM/YSZ 电极,YSZ 在中温 (IT) 范围 (700 C) 内的电导率相对较低,而 LSM 在此 IT 范围内主要是高极化电阻,限制了标准 SOFC 组件在 800 C 以下工作温度下的使用。为了降低基于 LSM - YSZ 的电池的工作温度,已经成功提出了选择性浸渍/过滤溶液基前体以形成纳米颗粒催化剂
纳米技术和光子学领域的最新进展为开发新一代灵活、便携、多功能和高性能光纤传感器提供了可能性,例如基于有损模式谐振 (LMR) 的传感器。由于其灵活性和相对较高的灵敏度,这种新方法在过去 20 年中应运而生,并发现了许多应用,如折射率 (RI) [ 1 ]、电压 [ 2 ]、pH 值 [ 3 ]、湿度 [ 4 ] 和化学检测 [ 5 , 6 ]。此外,由于 RI 灵敏度高,基于 LMR 效应的无标记生物传感器的研究也已有大量报道 [ 7 , 8 ]。这种光学效应发生在光纤上的薄膜中。然而,必须满足基底(光纤)、薄覆盖层和外部介质的介电常数的特定条件。一般来说,薄膜介电常数的实部必须为正,同时其幅度要高于其虚部和分析物的介电常数 [ 7 ]。因此,要获得 LMR,需要选择合适的光纤覆盖材料。许多薄膜材料沉积在石英玻璃上时可以获得 LMR。这些材料包括半导体和金属氧化物或氮化物(氧化铟镓锌 [9]、氮化硅 [10]、氧化铟锡 (ITO) [11]、掺氟氧化锡 (FTO) [12]、氧化锡 [13]、氧化锌 [9, 14]、氧化铟 [15]、氧化钛 [16],以及氧化铪、氧化锆和氧化钽 [17]、类金刚石碳膜 (DLC) [18] 和各种聚合物 [3])。其中一些材料,例如 ITO [19-21] 和 FTO [12],由于其独特的性能,例如良好的电导率和合适的带隙 [22],已被报道能够在光学和电化学两个领域发挥作用(EC)传感器的询问是可以同时进行的。由于多个