获得“良好”电解质是用金属阳极(LI,NA等)开发新代电池的主要障碍之一。其稳定性,在传导离子(Li +,Na +,…)方面的效率迅速,大量,环境可接受和易于整合到工业制造过程中,这是决定使用材料选择的最重要标准之一。在这篇综述中,我们专门关注GO的不同用途作为电池中电解质的一部分,例如M-金属(M = Li,Na,Zn…)或钒氧化还原流量电池作为商业分离器的化学修饰;作为新分离器的组成部分;作为薄膜和保护层复合;并作为带有聚合物和凝胶电解质的固态电解质复合材料的填充物。对收集的数据的分析允许指出GO在操作电池中相应电解质的稳定性,容量和可环性的效率和相关性。审查还试图确定不同方法的优势和劣势,以突出使用在电解质生产中使用的优势和局限性。
噬菌体,也称为噬菌体,是在细菌和古细菌中复制的病毒。噬菌体最初被发现为抗菌剂,并且在称为“噬菌体疗法的过程中,它们都被用作细菌感染的治疗剂。”最近,已经研究了噬菌体在各个领域的功能性纳米材料,因为它们不仅可以作为治疗剂,而且可以作为生物传感器和组织再生材料的功能。噬菌体对人是无毒的,它们具有自组装的纳米结构和功能特性。此外,可以很容易地对遗传修饰进行噬菌体以显示特定的肽或通过噬菌体显示筛选功能性肽。在这里,我们证明了噬菌体纳米材料在组织工程,传感和探测的背景下的应用。
40-3900填充银色的环氧树脂描述:40-3900是两个成分的环氧粘合剂,充满了银。该导电环氧树脂制剂提供的电阻率连续性,其电阻率值小于1x10 -4 ohm -cm。40-3900也以其宽的工作温度范围(-50至 + 170°C)而闻名。40-3900是专门设计用于微电子和光电应用中的粘合键的。由于其出色的连续性,它也已广泛用于诸如微波EMI和RFI屏蔽等应用,在印刷电路板的组装或修理中,波浪指南,电子模块,平坦电缆,高频屏蔽,连接器,电路,电路,以及作为冷焊料。40-3900用纯银(无合金)配制,并以方便的1:1混合比设计。树脂和硬化剂都分散了银色粉末。特征:<电导•热导电•室温固化•易于1:1混合比•良好的粘结强度典型规格:混合比,重量为1:1彩色银色混合粘度奶油粘贴质量寿命,100克质量 @ 25°C 1小时1小时的重力,25°C 25°C树脂2.98硬度1.8硬度,Shore D 70 d 70 drancile,Shore d 70 thoral dromal Tonstrivity,w 70 k. Lapshear,PSI(Al至Al)700弯曲强度,PSI 10,200音量电阻率,OHM-CM .0001操作温度。 范围,°C -50至 + 170治疗时间表a)24小时 @ 25°C b)1小时 @ 65°C)15分钟 @ 90°C电导•热导电•室温固化•易于1:1混合比•良好的粘结强度典型规格:混合比,重量为1:1彩色银色混合粘度奶油粘贴质量寿命,100克质量 @ 25°C 1小时1小时的重力,25°C 25°C树脂2.98硬度1.8硬度,Shore D 70 d 70 drancile,Shore d 70 thoral dromal Tonstrivity,w 70 k. Lapshear,PSI(Al至Al)700弯曲强度,PSI 10,200音量电阻率,OHM-CM .0001操作温度。范围,°C -50至 + 170治疗时间表a)24小时 @ 25°C b)1小时 @ 65°C)15分钟 @ 90°C
Grafena氧化物(GO)在各种应用中具有非常广泛的潜力,并且其应用之一可以用作光催化剂。从以前的研究中,使用金属氧化物的Go和Go Composies可以降解可以污染水域的液体废物有机染料。由纺织工业活动产生的着色剂之一是Rhodamin B(RHB)。在这项研究中,使用鹰嘴豆修饰方法从石墨进行了GO的合成。使用NH 4 OH溶液通过沉淀法制造了GO/ZnO复合材料,该解决方案得到了超声处理过程的辅助过程,其中Zn(No. 3)2.6H 2 O用作使GO/ZnO复合材料的前体。降水导致的沉积物被中和,然后在70℃加热20小时以获取GO粉末。通过以70℃加热复合沉积物8小时而产生GO/ZnO粉末。XRD样本结果证实形成的GO并不完美。FTIR结果证实,GO样品具有羧基,羰基,羟基和环氧函数组。通过辐射可见的射线和阳光,在RHB上以60至100 ppm的浓度在RHB上测试了两个样品的光疗过程。光催化剂质量在0.01至0.05克的范围内变化,辐照时间为1至5小时。GO/ZnO样品的光有关测试结果显示,60 ppm RHB溶液的脱色百分比达到66.27%,光催化剂质量为0.05克,持续5小时。虽然GO样品在相同的质量和照射时间下将RHB 60 ppm溶液分解为99.97%。
通过催化木质素去聚物的产生芳香单体的努力在历史上一直集中在芳基 - 醚键裂解上。然而,木质素中很大一部分的芳族单体与各种碳 - 碳(C - C)键相连,这些碳(C - C)键更具挑战性地裂解和限制木质素去聚合物的芳族单体产量。在这里,我们报告了一种催化自氧化方法,以从木质素衍生的二聚体和松树和杨树中的低聚物中裂解C - C键。该方法将锰和锌硅盐用作乙酸中的催化剂,并产生芳香族羧酸作为主要产物。在工程化的假单胞菌putida kt2440的菌株中,将含氧单体的混合物有效地转化为顺式 - 核酸,该菌株在4位时进行芳族O-二甲基化反应。这项工作表明,使用MN和ZR的木质素自氧化提供了一种催化策略,以提高木质素的宝贵芳族单体的产量。