生物废水处理是一种消除碳,氮和磷引起的污染的过程。为此,有氧微生物必须具有足够量的氧气,以免减慢这一过程。因此,这项研究评估了溶解的氧浓度和时间对废水样品中微生物生长速率的影响。为此,使用有氧微生物的混合培养物,同等浓度为SSV = 150 mg/L,溶解的氧气水平为2、3、4 ppm,观察时间为5天,浓度为5天,等于800 ppm。确定微生物的生长对细胞合成阶段有反应,并且根据溶解的氧气水平(2、3和4 ppm),它从150 mg/L增加到386.9、412.07和423.7 mg/L。另一方面,随着治疗时间的经过,微生物生长的速率降低了,尽管事实上溶解氧浓度的作用的重要性可以忽略不计。最后,时间和两个变量的相互作用都是相关的。
具有特定位置化学成分的功能梯度材料 (FGM) 通常通过定向能量沉积 (DED) 制造。尽管之前的工作制造了一种成分在铁素体和奥氏体合金之间变化的 FGM,但是由于成分变化导致沉积物形状发生变化,因此出现了困难。文献中的 FGM 也存在此问题;然而,与其他情况不同,这两种合金在整个构建过程中的热物理性质相似。在这里,我们研究了在通过激光 DED 制造 FGM 过程中化学成分和表面活性元素对沉积物几何形状的作用。使用经过充分测试的三维瞬态数值传热和流体流动模型和热力学计算的结果,分析了相关 FGM 成分的单轨实验。实验表明,在恒定的激光功率和扫描速度下,沉积物形状随成分而变化。热力学分析表明,熔合区中氧的溶解度对于用于 FGM 的每种成分都存在显著差异。数值建模表明,熔合区中溶解氧引起的 Marangoni 对流引起的流体流动变化是实验中观察到的沉积物形状变化的主要原因。由于氧气可以通过原料以及周围大气进入熔合区,这些发现阐明了 FGM DED 制造过程中以前未考虑的工艺控制方面。
熔化潜热,ΔHJ kg -1 2.62x10 5 2.58x10 5 2.51x10 5 2.56x10 5 2.57x10 5 2.56x10 5 2.59x10 5 液体粘度,μ kg m -1 s -1 6.67x10 -3 6.81x10 -3 6.89x10 -3 6.97x10 -3 7.03x10 -3 7.09x10 -3 7.21x10 -3 热膨胀系数,αK -1 1.78x10 -6 1.78x10 -6 1.96x10 -6 2.16x10 -6 2.31x10 -6 2.26x10 -6 2.22x10 -6 1064nm波长的吸收系数,η - 0.351 0.344 0.337 0.329 0.322 0.315 0.308
1标题:海洋沉积铀与钡比作为2更新世底部水氧浓度的潜在定量代理3 4作者:5 Kassandra M. Costa 1; Sune G. Nielsen 1,2; Yi Wang 1,2; Wanyi Lu 1; Sophia K. V. Hines 3; 6 Allison W. Jacobel 4,5; Delia W. Oppo 1 7 8隶属关系:9 1伍兹洞海洋学机构,伍兹孔海洋学机构,伍兹10洞,马萨诸塞州,美国,美国11 2 Nirvana Laboratories,Woods Hole Oceanographic Institution,伍德斯海洋学会,马萨诸塞州伍兹洞,美国马萨诸塞州12 3 3 3 3 3海洋化学和地球化学系美国VT,美国15 5地球,环境和行星科学系,布朗大学,美国RI 16号,美国16号,17 18联系人:19 Kassandra M. Costa; kassandra.costa@whoi.edu 20 21摘要22 23氧气对海洋生态系统至关重要,并且通过呼吸与深海中的碳储存24相关。过去重建氧气浓度受到25个缺乏定量而不是定性代理的限制,但是最近已经开发了几种新的(半)26个定量氧气代理。在这项研究中,我们通过将其标准化为28(BA)来探讨了将大量沉积铀(U)添加到此列表中的27种可能性。首先,在全球尺度上比较了u/ba和底部水氧浓度,使用核心顶部数据库,在大于200 m的水深度中,使用核心顶部数据库进行了比较。35 U/BA的氧气重建通常与先前36个发表的烯酮保存和底栖有孔虫的表面孔隙率记录的氧气相一致。然后,30在较小的空间31量表上,U/BA和底部水氧之间的关系进行了检查:在每个海洋盆地内,在赤道太平洋,32阿拉伯海和西方赤道大西洋的东部区域内。在此区域量表上,次要33对U和BA行为的影响可能在空间上更均匀,经验34分段线性校准得以开发,随后在Downcore Records上进行了测试。也已经确定了U/BA作为氧气代理的效用的几个局限性。代理38仅应在包含39硫酸盐的硫酸盐的最上层间隔中应用,以最大程度地减少稀释岩成岩的成岩作用,并且应监测磷含量的40个潜在影响磷灰石对铀含量的潜在影响。u/ba在平均冰川和冰川间期间与气候42转变期间记录41个氧气浓度更为成功,当时的时间和振幅可能对燃烧和43平滑。对校准的保守误差导致44个区域U/BA的最大效用,其氧气浓度相对较高(例如,> 50 µ mol/kg)和较大的氧45个变异性(±10s µ mol/kg)。即使使用这些注意事项,u/ba也是两个定量的46氧气代理之一,可能能够记录高于50 µ mol/kg的可变性,而另外47个研究在48个努力中对其在不同环境环境中的功能进行了研究,可以在过去的48个努力中重建过去的氧气浓度的整个氧气浓度。
工业必备设备 锅炉广泛应用于电力、制药、化学、陶瓷、造纸和纸浆等行业。近年来,随着能源成本的上升、环境法规的严格化和安全意识的增强,对锅炉高效运行、低排放运行和安全稳定运行的需求日益增长。提高锅炉效率、降低排放 为了确保空气和燃料以最佳比例燃烧、消除燃料浪费、净化废气,需要实时监测燃烧气体的氧浓度。氧化锆氧浓度分析仪ZR系列配备了使用寿命更长的氧传感器单元,能够高可靠性地测量氧浓度。烟气分析仪 SG700 可监测 NOx、SO2 和 CO2 等废气成分,以确保低排放运行。
Spark OES 的新视角 “在 Metalor Technologies,我们还开始探索 ARL iSpark OES 光谱仪可能的新应用领域。第一个是确定氧浓度,这已经在纯银中显示出良好的效果。第二个称为 Spark-DAT,它允许在标准 OES 分析方法的同时快速评估非金属夹杂物的浓度。这种组合方法的好处是,我们不仅可以获得金属中氧浓度的信息,还可以确定氧以何种氧化物形式存在。”
摘要 - 我们报告了一种可生物降解的自动传感器,用于测量体内溶解的氧气。操作原理是氧还原反应与腐蚀电化学夫妇阴极的通常显性氢还原反应的竞争。由于氧还原反应对总体电化学反应的相对贡献取决于局部氧气的集中,因此这对夫妇的输出电压也取决于局部氧气浓度。通过使用层压层嵌入可生物降解的聚(乳酸)底物中,将传感器嵌入可生物降解的金属镁和钼。外部生理溶液被用作电解质。在典型的生理氧浓度范围内测量了传感器的输出电压(即,在整个腐蚀夫妇中产生的电压)是氧浓度的函数。观察到每百分比氧浓度约为6 mV的线性输出电压响应;高于此范围的氧气浓度导致传感器饱和。[2020-0192]
方法:招募 21 名右利手受试者,要求他们在同一平面上以相同方向(同相,IP)和相反方向(反相,AP)完成单指和双指的圆周运动。记录每个任务的运动数据(包括半径和角速度)以及使用功能性近红外光谱 (fNIRS) 同步的血氧浓度数据,覆盖前额叶皮层、运动皮层和枕叶等六个脑区。使用一般线性模型定位激活的脑区,并使用与基线相比血氧浓度的变化来评估脑区激活程度。使用小世界特性、聚类系数和效率来测量运动过程中大脑活动中的信息交互。
麦格理港水生生态系统高度分层,表层为淡水,富含单宁,中层为咸水,深层水盐度接近海洋盐度(EPA 2017)。这些特点共同决定了深层港口水域与海洋的交换有限,导致港口深处和中层的氧气含量自然较低(Wild-Allen 等人,2020 年)。虽然港口的天然氧气水平历来变化很大,但监测数据表明,港口和集水区的人类活动(包括水产养殖和上游水力发电)也会影响溶解氧 (DO) 浓度。监测数据表明,大约在 2009 年,溶解氧浓度开始大幅下降。虽然近年来出现了一些改善的迹象,但溶解氧浓度仍远低于 2009 年的水平(Ross 等人,2022 年)。