摘要 组成性环氧合酶(COX-1;前列腺素内过氧化物合酶,EC 1.14.99.1)在生理条件下存在于细胞中,而 COX-2 则由某些细胞因子、有丝分裂原和内毒素诱导,可能是在病理条件下,如炎症。因此,我们评估了一些非甾体抗炎药对完整细胞、破碎细胞和纯化酶制剂中 COX-1(在牛主动脉内皮细胞中)和 COX-2(在内毒素激活的 J774.2 巨噬细胞中)活性的相对抑制作用(绵羊精囊中的 COX-1;绵羊胎盘中的 COX-2)。阿司匹林、吲哚美辛和布洛芬对破碎细胞和纯化酶制剂的效力相似,表明物种没有影响。在所有使用的模型中,阿司匹林、吲哚美辛和布洛芬对 COX-1 的抑制剂作用比对 COX-2 的抑制剂作用强。尽管 IC50 值不同,但阿司匹林和吲哚美辛的相对效力在不同模型之间仅略有不同。布洛芬对完整细胞中的 COX-2 的抑制剂作用比对破碎细胞或纯化酶中的 COX-2 的抑制剂作用强。水杨酸钠对完整细胞中的两种 COX 异构体都是一种弱抑制剂,对破碎细胞或纯化酶制剂中的 COX 均无效。双氯芬酸、BW755C、对乙酰氨基酚和萘普生对完整细胞中的 COX-1 和 COX-2 的抑制剂作用大致相同。BF 389 是一种目前正在人体中测试的实验药物,它是完整细胞中 COX-2 最有效和最具选择性的抑制剂。因此,这两种酶之间存在明显的药理学差异。利用这些 COX-1 和 COX-2 活性模型,可以鉴定出副作用可能小于现有疗法的 COX-2 选择性抑制剂。一些抑制剂在完整细胞中的活性比在纯化酶中的活性高,这表明纯酶制剂可能无法预测治疗作用。
用户通知尊敬的用户,非常感谢您购买了脉搏OXI仪表(以下简称为设备)。本手册是根据理事会指令MDD93/42/EEC编写和编写的,用于医疗设备和和谐的标准。如果进行修改和软件升级,则本文档中包含的信息如有更改,恕不另行通知。这是一种医疗设备,可以反复使用。手册根据设备的功能和要求,主要结构,功能,规格,运输,安装,使用,使用,操作,维修,维护和存储等描述。以及安全程序可以保护用户和设备。有关详细信息,请参阅尊重章节。使用此设备之前,请仔细阅读用户手册。应严格遵循描述操作程序的用户手册。未能遵循用户手册可能会导致测量异常,设备损伤和人体伤害。由于用户对操作说明的疏忽,制造商对安全性,可靠性和性能问题以及任何监测异常,人身伤害和装置损害概不负责。制造商的保修服务不涵盖此类缺陷。由于即将进行的翻新,您收到的特定产品可能与本用户手册的描述完全不符。我们会为此衷心遗憾。我们公司对本手册有最终解释。本手册的内容如有更改,恕不另行通知。警告提醒它可能会对测试人员,用户或环境造成严重后果。
冷泉港实验室DNA 学习中心(DNALC)是世界上第一个完全致力于遗传学教育的科学中心。超过 30,000 名学生参加过我们的科学营。在经验丰富的指导老师的带领下,升6 至12 年级的学生使用先进的 实验设备和计算机设备进行领先于同侪好几个年级的实验。
免疫治疗的临床应用是肿瘤治疗的里程碑,但部分患者对免疫治疗反应不佳。环氧合酶-2(COX-2)在多种癌细胞中均有表达,且与预后不良相关。它是前列腺素E2(PGE2)的关键酶,已被证明能促进肿瘤细胞的发展、增殖和转移。近期研究进一步发现,肿瘤微环境(TME)中的PGE2通过多种途径主动触发肿瘤免疫逃逸,导致免疫治疗反应不佳。COX-2抑制剂被认为可以抑制PGE2的免疫抑制,并可能增强或逆转免疫检查点抑制剂(ICI)的反应。本综述深入探讨了COX-2/PGE2信号在免疫抑制性TME中的机制,并总结了其在肿瘤治疗中的临床应用和试验。
简介 1 型糖尿病 (T1D) 的发病机制涉及胰岛内多种细胞类型之间的复杂相互作用,包括先天免疫细胞(巨噬细胞、树突状细胞)、胰岛素分泌细胞(β 细胞)和适应性免疫细胞(T 细胞、B 细胞)(1)。尽管传统上认为该疾病是由免疫耐受的原发性缺陷引起的,但一种新兴观点认为,环境因素(如病毒或其他全身性炎症性疾病)可能会加剧巨噬细胞和 β 细胞之间的相互作用,促进 β 细胞中的氧化和内质网 (ER) 应激途径 (2–4)。这些途径促进 β 细胞新表位的产生,进而引发适应性自身免疫 (5, 6)。疾病改良疗法(改变疾病发病机制而不是纠正潜在疾病表型的疗法)主要集中于适应性免疫系统,并在临床试验中取得了一些成功。例如,针对活化 T 细胞的抗 CD3 单克隆抗体 (teplizumab) 已被证明可将高危人群的 1 型糖尿病发病时间延迟长达 2 年 (7)。鉴于先天免疫细胞和 β 细胞在 1 型糖尿病早期发病机制中的作用越来越受到重视,针对这些细胞类型的药物的鉴定提出了联合治疗方法可能提供更持久疗效的可能性。脂氧合酶 (LOX) 包含一个参与脂质代谢的酶家族,可促进多不饱和脂肪酸的氧合形成二十烷酸,其中一些具有促炎性质 (8)。在小鼠中,12/15-LOX 由 Alox15 基因编码,是巨噬细胞和 β 细胞中存在的主要活性 LOX,并产生促炎性二十烷酸 12-羟基二十碳四烯酸 (12-HETE) 作为底物花生四烯酸的主要产物 (9)。 Alox15 的整体删除
冷泉港实验室DNA学习中心(DNALC)是世界上第一个完全致力于关系教育的科学中心。超过30,000名学生参加了我们的科学营。在老师丰富的指导下,升6至12年级的学生使用先进的实验设备和电脑设备进行了同侪好几个年级的实验。
异构酶有一个经验丰富的生物过程开发团队,他们与化学和合成生物学团队建设性地合作,以开发有效的,具有成本效益的方法,生产生物制药和基于生物的产品。它涵盖了广泛的活动,包括发酵优化,下游处理,分析监测,技术转移,技术经济建模,并通过设计原理通过质量通过质量进行增强的实验,将开发工具应用于较高的风险技术领域,快速跟踪进度和确保强化的过程可以进行综合准备。我们拥有创新的技术,例如我们的HIMASS(高通量微量尺寸分析筛选系统)平台,该平台生成了代表性的预测模型,以快速有效地筛选酶技术。我们可以以克至千克量表提供支持研究计划的材料。
摘要基于插入电极材料的锂离子电池的能量密度已达到其上限,这使得满足对高能存储系统需求不断增长的挑战。基于硫,有机硫化物等转化反应的电极材料,涉及破裂和化学键改革的氧气可以提供更高的特定能力和能量密度。此外,它们通常由丰富的元素组成,使其可再生。尽管他们具有上述利益,但对于实际应用而言,他们面临许多挑战。例如,硫和分子有机硫化物的循环产物可以溶于液体电解质,从而导致穿梭效应和大量容量损失。氧的排放产物为Li 2 O 2,这可能导致电解质的高电荷过电势和分解。在这篇评论中,我们概述了当前改善锂硫,锂,有机硫化物和锂氧气电池的性能的策略。首先,我们总结了克服硫和有机硫化物阴极面临的问题的努力,以及提高有机硫化物能力的策略。然后,我们介绍了锂氧气电池中催化剂的最新研究进度。最后,我们总结并提供了电极材料转换的前景。
酶工程是一个革命性的领域,它利用生物催化剂的潜力转化和优化工业过程,药品生产以及其他各种应用。酶,自然的分子机器,在催化生化反应中起着至关重要的作用,并且它们通过遗传和生化技术的操纵开辟了科学和技术领域的新边界。