免责声明 本出版物及其中的材料均按“原样”提供。IRENA 已采取一切合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA 及其任何官员、代理、数据或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对于使用本出版物或此处材料的任何后果,他们不承担任何责任或义务。此处包含的信息不一定代表 IRENA 所有成员的观点。提及特定公司或某些项目或产品并不意味着 IRENA 认可或推荐它们优于未提及的其他类似性质的公司或项目或产品。此处使用的名称和材料的呈现方式并不意味着 IRENA 对任何地区、国家、领土、城市或地区或其当局的法律地位,或对边界或边界的划定发表任何意见。
CCS Carbon capture and storage CCUS Carbon capture, utilisation and storage COAG Council of Australian Governments CSIRO Commonwealth Scientific and Industrial Research Organisation DBNGP Dampier Bunbury Natural Gas Pipeline DC Direct Current DG Dangerous Goods DNI Direct normal irradiance EP Environmental Protection EPA Environmental Protection Authority EPBC Environment Protection and Biodiversity Conservation EPC Engineering, Procurement and Construction EPCM Engineering, Procurement and建筑管理ERIA ERIA经济研究所在东亚和东亚ESG环境,社会和治理饲料前端工程和设计FP FREMANTLE POR GA GA PORT GA GHI GHI GHI全球水平辐照度GIA通用行业GNIC GEALDTON到Narngulu港口Narngulu港口环境HV高压IEA国际能源局ISO国际标准化组织
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
健康储蓄帐户•节省税前的钱以支付合格的医疗,牙科和视力费用•EOG每年最多贡献1,000美元的牙科牙科•通过首选牙医计划愿景获得折扣的补贴PPO计划•覆盖范围•覆盖年度考试和镜头/镜头/镜头/镜头或与您的顾问进行良好的努力•赢得良好的服务,以赢得良好的服务,并赢得了良好的服务。每年每年每年的每年16次免费会议短期残疾•防止因非职业疾病或状况长期残疾而造成的收入损失•由于延长的残疾基本员工生命而造成的收入福利受到保险保护,EOG•EOG•EOG提供50,000美元的覆盖范围$ 50,000,无需提供费用补充员工寿命,可用于购买补充供应份额的供应份额•购买供应份额•购买覆盖范围•购买保险••购买覆盖物••购买的差异••购买且可享受••购买•购买••购买覆盖物••购买••购买••购买覆盖物•••购买••购买••购买••购买•购买••购买••购买••购买•购买•购买••购买差异••购买保险• EOG提供$ 50,000的承保范围,免费补充广告&D•购买补充雇员或家庭覆盖额的护理FSA•节省税前美元以支付符合条件与工作相关的依赖依赖的护理费用
4环境福利指标是通过使用Brambles产品与单使用替代品(从相关产品LCAS获得的)到本年度发给客户发给客户的每个相关产品的数量相比,通过使用棕褐色产品来计算的。已重述了FY23的结果以纠正错误,并参考了北美和拉丁美洲的最新LCA。请参阅第8页的准备基础 - ESG指标,以获取有关FY23重述的更多详细信息。5参考全球报告计划标准:产生的经济价值与集团销售收入有关;分布的经济价值与股息,员工成本,所得税,贷款利息和向供应商支付的款项有关;保留的经济价值代表了产生和分布的经济价值之间的差异。
摘要:使用归一化的流和重新加权,Boltzmann发电机可以从玻尔兹曼分布中启用平衡采样,该分布由能量函数和热力学状态定义。在这项工作中,我们引入了热力学插值(TI),该插值允许以可控制的方式生成采样统计。我们引入了直接在环境配置空间中工作的Ti风味,在不同的热力学状态或通过潜在的,正态分布的参考状态绘制。我们的环境空间方法允许规范任意目标温度,从而确保训练集的温度范围内的普遍性,并证明了外推的潜力。我们验证了TI对表现标准化和非平凡温度依赖性的模型系统的有效性。最后,我们演示了如何通过各种自由能扰动方法组合基于Ti的采样来估计自由能差,并提供相应的近似动力学速率,通过发电机扩展动态模式分解(GEDMD)估计。■简介
塑料故障是用于塑料一生中发生在塑料中的任何类型的变形的常见术语。失败的主要类型包括磨损,裂纹,降解,失真和美学改变。这些故障可能会影响使用特定塑料部分的应用程序的性能和使用寿命。为了避免此类问题,了解塑料失败的类型和原因很重要。