γ-氨基丁酸-A(GABA A)受体是最广泛规定的睡眠药物的靶标。它是一个由氨基酸神经递质GABA激活的配体门控离子通道,通常导致神经元的超极化导致动作电位降低,从而减少神经元活性。它具有丰富的药理学,并具有许多独立的调节剂结合位点。其中最好的研究是苯二氮卓网站。苯二氮卓类药物对GABA A受体活性的调节产生镇静,催眠,抗焦虑和抗惊厥活性。短期半衰期的苯二氮卓类药物(例如三唑仑)在治疗失眠症方面特别有用,但是人们对经典苯二氮卓类药物的耐受性潜力和依赖性责任提高了,这导致了这些药物的处方减少。近年来,睡眠障碍的治疗已朝着使用非苯二氮卓类镇静性催眠药的使用。这些药物在GABA A受体上的同一部位作用,但与经典苯二氮卓类药物相关的问题较少。我们对GABA的多样性和药理学亚型的多样性和药理学的最新进展为这些化合物的效率提供了合理的解释。临床前研究的发现揭示了在不久的将来设计更好治疗剂的有希望的途径。©2004由Elsevier B.V.保留所有权利。
抽象睡眠是哺乳动物存活的重要活动。良好的睡眠质量有助于促进日常功能的性能。睡眠不足会降低日常活动的效率,引起各种慢性疾病,例如阿尔茨海默氏病,并增加发生事故的风险。GABA能系统是中枢神经系统中的主要抑制性神经递质系统。它通过GABA A和GABA B受体转移了γ-氨基丁酸(GABA)神经递质,以使平衡兴奋性神经递质,例如谷氨酸,甲肾上腺素,血清素,血清素,血清素,乙酰胆碱,甲胆碱,甲状腺素,甲状腺素,甲状腺素和多巴胺,并在释放和释放Assal Asosal Asase Assale Assale Assage。几项研究强调,GABA能系统的功能障碍与失眠有关,这是最普遍的睡眠障碍。GABA能系统包括GABA神经递质,GABA受体,GABA合成和降解。许多研究表明,GABA水平与睡眠质量相关,这表明调节GABA能系统可能是失眠症的一种有希望的治疗方法。在本文中,我们强调了睡眠的重要性,失眠的分类和病理以及GABA能体系的影响对睡眠的变化。此外,我们还回顾了针对失眠症的GABA能系统的药物,包括苯二氮卓类药物(BZDS),非BZDS,巴比妥类药物,GABA补充剂和中草药。
在美国,每天有近 60,000 例手术使用全身麻醉(Brown、Lydic 和 Schiff,2010 年)。全身麻醉的一个关键组成部分是无意识,在此期间患者不知道自己所处的环境(Brown 等人,2010 年)。当无法实现这一目标时,就会出现术中意识(Ghoneim,2000 年)。虽然这种现象很少见(Sebel 等人,2004 年),但经历过这种现象的患者报告称,他们受到了严重的创伤(Kotsovolis 和 Komninos,2009 年)。大多数关于麻醉对大脑影响的研究都集中在生理状态变化上。然而,如果我们要了解麻醉如何导致无意识以及麻醉在术中意识中是如何失效的,我们需要了解麻醉对感觉输入处理的影响。我们打算使用最常用的麻醉剂之一异丙酚来做到这一点。丙泊酚是一种 γ-氨基丁酸激动剂(Hemmings 等人,2005 年,2019 年;Bai、Pennefather、MacDonald 和 Orser,1999 年)。尽管丙泊酚的分子作用机制已被充分理解(Sahinovic、Struys 和 Absalom,2018 年),但我们对其在功能网络层面的作用机制了解较少(Lewis 等人,2012 年,2013 年;Purdon 等人,2013 年;Brown、Purdon 和 Van Dort,2011 年)。丙泊酚诱导慢振荡总体增加
经颅直流电刺激 (tDCS) 是一种非侵入性脑刺激,可安全地调节大脑兴奋性并具有对许多疾病的治疗潜力。多项研究表明,初级运动皮层 (M1) 的阳极 tDCS 有助于运动学习和可塑性,但有关其潜在机制的信息很少。使用磁共振波谱 (MRS) 已显示 tDCS 可影响成人局部的 γ -氨基丁酸 (GABA) 和 Glx(谷氨酸和谷氨酰胺的总和)水平,这两者都已知与技能习得和可塑性有关;但这尚未在儿童和青少年中进行研究。本研究检测了儿科人群中针对 M1 的常规阳极 tDCS (a-tDCS) 和高清 tDCS (HD-tDCS) 对 GABA 和 Glx 的反应。 24 名正常发育的右利手儿童(年龄 12-18 岁)连续五天参加 tDCS 干预(假干预、a-tDCS 或 HD-tDCS),针对右侧 M1,同时用左手进行精细运动任务(Purdue Pegboard Task)训练。在方案之前和之后(第 5 天和第 6 周),使用 PRESS 和 GABA 编辑的 MEGA-PRESS MRS 序列测量感觉运动皮质中的 Glx 和 GABA。6 周时,HD-tDCS 组左侧感觉运动皮质测得的 Glx 高于 a-tDCS 和假干预组(p = 0.001)。在任何时候均未观察到任何感觉运动皮质中的 GABA 变化。这些结果表明 a-tDCS 或 HD-tDCS 都不会局部影响发育大脑中的 GABA 和 Glx,因此它可能在成人中表现出不同的反应。
本文探讨了神经递质多巴胺、谷氨酸和γ-氨基丁酸 (GABA) 导致精神分裂症的假设,并得出结论:谷氨酸影响多巴胺和 GABA 的联合模型是最合理的解释机制。多巴胺假说得到了证据的支持,即精神分裂症患者的特定大脑区域的多巴胺受体和神经递质明显增加和减少。此外,针对多巴胺受体的药物已成功减轻了精神分裂症症状。谷氨酸假说认为神经递质谷氨酸是这种疾病的基础,因为影响 NMDA(谷氨酸)受体已被证明会导致积极和消极的精神分裂症症状,包括仅在精神分裂症中出现的视觉和听觉症状。此外,与 NMDA 受体和精神分裂症相关的几个基因存在遗传关联。 GABA 模型也被探索,因为篡改与 GABA 相关的细胞已被证明会诱发精神分裂症症状,尽管这可以解释为与谷氨酸模型的结合,而不是对立。单独考虑时,这些假设是有缺陷的。多巴胺模型无法解释负面的精神分裂症症状,针对多巴胺受体的药物仍然无法完全减轻自我报告的症状。同样,谷氨酸模型可能是由不规则的 GABA 量引起的,谷氨酸假说也可能解释针对多巴胺的治疗的积极作用。有证据表明,导致 NMDA 受体功能下降的药物会导致多巴胺功能障碍。结合多巴胺和谷氨酸参与的有力证据,最合理的模型是 NMDA 功能障碍导致 GABA 和多巴胺受体问题。
摘要:这项研究旨在利用两个副产品,酸乳清和苹果波马斯,以及具有益生菌潜力的本地乳酸乳酸乳酸乳酸乳酸菌LL16菌株,可生产具有功能特性的可持续奶酪。酸乳清蛋白奶酪是通过对新鲜酸乳清的热凝制成的,并通过添加苹果pomace,L。乳乳杆菌LL16菌株或两者的混合物来增强最终产物。在冷藏储存的14天内评估了评估感官,物理化学,蛋白水解和微生物参数。奶酪在受影响的奶酪(p≤0.05)中补充奶酪成分(水分,蛋白质,脂肪,脂肪,碳水化合物和纤维),质地,颜色,颜色(轻度,发红和Yellowness),以及整体感觉可接受性。添加假定益生菌L.乳酸乳杆菌LL16应变降低(P≤0.05)谷氨酸的浓度,从而在酸乳酪奶酪中显着增加γ-氨基丁酸(GABA)。补充苹果波马斯在第七天略有(p <0.05)的乳酸乳杆菌LL16较高(p <0.05),这表明苹果pomace成分对应变存活的阳性作用。在奶酪中,苹果波马斯和LL16的共生作用在蛋白水解(pH 4.6溶解的氮和游离氨基酸)上被发现,这可能会积极影响整体感觉接受。
了解酒精与药物的相互作用:明智饮酒是保持强健的思想、身体和精神的支柱。负责任的饮酒方式的一部分是了解饮酒如何与药物相互作用。如果您曾经去过药房,您可能已经看到带有警告标签的药物,警告您在服药时不要饮酒。非处方 (OTC) 药物,如止咳糖浆、过敏药和其他 OTC 药物可能会带有类似的警告。酒精不是一种恢复力工具,使用酒精会影响药物的有效性并对健康和安全产生不利影响,并增加意外过量和死亡的风险。美国疾病控制和预防中心 (CDC) 报告称,与处方药滥用有关的急诊就诊中约有五分之一也涉及酒精。药物和酒精相互作用的常见副作用包括头晕、嗜睡、恶心和呕吐、心率加快、高血压、呼吸减慢或困难、运动控制受损、记忆问题、内出血、心脏问题和肝损伤。酒精对中枢神经系统 (CNS) 有抑制作用,可以使具有类似抑制作用的药物的效果加倍。将您的中枢神经系统视为您身体功能的桥梁或指挥中心。中枢神经系统抑制剂通过增加大脑的 γ-氨基丁酸 (GABA) 产生来发挥作用。GABA 会使人感到昏昏欲睡,并从化学上限制大脑活动并减缓整个中枢神经系统的运作。避免有害的酒精和药物相互作用的步骤:
引言癫痫会影响大约1%的人口,并可能导致多达5%的患者的生死质量大幅下降(1)。当前的治疗方案集中于对神经元超活性的症状控制。尽管开发了大量的毒药(ASM),但近三分之一的癫痫患者患有耐药性癫痫(2)。癫痫研究的优势集中在改变神经元活性上,但有几个例外集中在免疫调节上(3-5)。神经炎症在癫痫中的作用的临床证据包括在超级耐药性表演中使用皮质类固醇和几种常见ASM的抗炎作用(6-8)。的纵向鼠模型的纵向分析,例如毛果果诱导的癫痫持续状态(SE),同样暗示了癫痫中的免疫系统,通过证明激活的CD11b +和F4/80 +巨噬细胞的短暂增加,随后大脑中CD3 + T细胞增加了(9)。免疫反应性的遗传和药理学操纵还会影响临床前模型中的癫痫发作,阈值,频率和诱导(10-13)。更具体地说,癫痫发作活性后已注意到IL-1受体(IL-1R)上调,收费受体(TLR)的作用会导致突触传播和长期增强(LTP)的变化(11)。降低的Ca 2+电流复极化和γ-氨基丁酸(GABA)活性与IL -1B激活有关(14)。此外,星形胶质细胞已被证明会在IL-1R/TLR途径激活后增加兴奋性神经递质谷氨酸(15)。在代谢组学的新兴领域中,其中许多具有免疫调节特性,越来越多的证据表明免疫系统可能正在调节癫痫病。
微生物群是动态的,会随着早期发育、环境因素(如饮食和抗生素的使用)以及尤其是对疾病的反应而变化(Lozupone 等人,2012 年)。最显著的变化发生在婴儿期和幼儿期(Palmer 等人,2007 年)。婴儿肠道微生物群受胎龄(足月或早产)、分娩方式(阴道分娩或剖腹产)、喂养类型(母乳或配方奶粉)、母亲营养状况(超重或营养不良)和抗生素使用情况的影响(Meropol 和 Edwards,2015 年)。肠道微生物群发挥着一系列重要的生理功能,包括食物消化、维生素生成、免疫系统调节和预防有害病原体定植。最近,人们对肠道微生物群的兴趣日益浓厚,因为它不仅是我们消化系统和整体健康的重要组成部分,而且在精神疾病中也发挥着重要作用。通过肠脑轴,肠道菌群与神经系统进行交流,利用各种途径,如 HPA 轴(下丘脑-垂体-肾上腺轴)、迷走神经和免疫系统分子的参与,即参与炎症过程的细胞因子。神经通路包括迷走神经、肠神经系统和胃肠道内神经递质的活动。传入感觉神经的神经调节直接产生可作为局部神经递质的分子,如γ-氨基丁酸 (GABA)、血清素、褪黑激素、组胺和乙酰胆碱;该通路还在肠腔内产生具有生物活性的儿茶酚胺(Mayer 等人,2014 年)。此外,肠道微生物群似乎对正常的肠道内在初级传入神经元兴奋性至关重要 (McVey Neufeld 等人,2017 年)。细菌代谢物,最重要的是短
中毒性表皮坏死松解症 (TEN) 和 Stevens-Johnson 综合征 (SJS) 具有共同的生物学机制,可以看作是一个连续体,其中 TEN 处于严重性和致死性的极端位置。普瑞巴林是一种 γ-氨基丁酸 (GABA) 类似物,可与中枢神经系统中的辅助电压依赖性钙通道亚基结合。它于 2004 年首次在欧盟获得批准,目前以大量商标名称上市。普瑞巴林适用于治疗成人患者的中枢和周围神经性疼痛、癫痫(作为伴有或不伴有继发性全身性发作的部分危机的辅助治疗)以及广泛性焦虑症。SJS 于 2007 年被列入含有普瑞巴林的原始药品的 SmPC 中。从那时起,已经报告了严重皮肤不良反应 (SCAR) 病例,例如 TEN,包括危及生命和致命的情况。 TEN 是一种真正的医疗紧急情况;因此,应立即停用疑似药物并开始治疗。早期诊断对于预后至关重要。在 2022 年 1 月完成的欧洲范围的安全信号评估中,审查了临床前和临床研究、文献和欧洲药物不良反应数据库 EudraVigilance 的所有可用数据。此外,还对上市后的 TEN、SJS/TEN 和类似反应病例进行了累积分析。鉴于 TEN 的病理生理机制和临床特征,TEN 是一种比之前列出的 SJS 更严重的 SCAR,因此得出结论,需要更新含普瑞巴林药品的信息。欧洲药品管理局已决定修改 SmPC 文本以包括以下内容: