4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
在 Fritz Haber 的基础研究工作的基础上,Carl Bosch 及其工程团队利用 Alwin Mittasch 及其同事发现的经过改进的铁基催化剂,将氨合成技术发展到了技术可操作性。从那时起,合成反应本身并没有发生根本性的变化。即使在今天,每家工厂的基本配置都与第一家工厂相同。氢氮混合物在 400 – 500 °C 的高温(最初高达 600 °C)下在铁催化剂上发生反应,操作压力高于 100 bar,在除去所形成的氨后,未转化的合成气部分被再循环,并补充新鲜的合成气以补偿转化为氨的氮和氢的量。
属于属于生理组的微生物具有相似的功能并参与特定活动。重要的土壤微生物是参与氮固定,植物残留降解,硝化,氨化和硝化过程的微生物。它们主要属于细菌的分类类别。它们是在具有选择性进食的特定设置中找到的。,氨磷酸盐占据了最重要的占主导地位。氨餐剂确保通过参与氨化过程来保留氮的有机分子形成铵。肉肽琼脂用于培养和量化氨掺杂剂。此外,还进行了培养基中所有微生物的普查。因此,在上一章中,还以牺牲细菌为代价考虑了氨云母。
摘要:使用 I5N 示踪技术测量了 6 个欧洲潮汐河口(莱茵河、斯凯尔特河、卢瓦尔河、吉伦特河和杜罗河)的氨和硝酸盐吸收量。氨和硝酸盐的吸收率分别为 0.005 至 1.56 pmol N 1-' hI 和 0.00025 至 0.25 pmol N 1-' hI,且在河口之间和河口内部存在显著差异。使用相对优先指数 (RPI) 分析氮吸收量表明,氨是首选底物。颗粒氮的周转时间(0.7 至 31 天)和溶解氨的周转时间(0.1 至 27 天)与河口水停留时间相似或更短,而溶解硝酸盐的周转时间(19 至 2160 天)比停留时间长。因此,河口水柱中硝酸盐的同化不会影响其分布,除非发生显著的反硝化作用和/或埋藏在沉积物中,否则河口中大部分硝酸盐都会被冲走。由于铵和颗粒氮被有效地再循环,大多数外来有机物在输出、埋藏或被更高营养级消耗之前都经过了广泛的微生物改性。
•N的三键必须破碎,并且必须将三个氢原子添加到每个氮原子中。活生物体使用源自碳水化合物的氧化(“燃烧”)的能量,将分子氮(N 2)降低至氨(NH 3)。氮固定的化学过程涉及化石燃料的“燃烧”以获取电子,氢原子和减少分子氮所需的能量。
确定优化的氯胺消毒处理和分配硝化问题需要监测几个参数。这些参数的量化对于理解和优化氯胺过程以及确定分配系统中可能存在硝化问题的区域至关重要。为了实施 NAP,CWS 应监测总氨氮、游离氨氮、亚硝酸盐氮、硝酸盐氮、一氯胺残留物、二氯胺残留物和总氯残留物。了解氯化曲线(见图 18-1)和这些监测参数的相关性提供了必要的信息,可以在处理方案中进行调整,以优化氯胺过程并最大限度地降低硝化风险。额外的过程管理可能包括监测游离氯和 pH 值。当怀疑存在硝化时,可以使用发现的细菌的种类和量化作为测量硝化程度的手段。
DeNOx 装置负责烟气脱硝。为此添加氨,氨与氮氧化物反应生成氮和水。泄漏测量用于控制添加的氨量。这有助于从两个方面优化脱硝过程:一方面,添加适量的氨可显著降低成本,另一方面可最大限度地减少排放。通过直接安装在排气流中的 LDS 6 现场气体分析仪实时测量氨浓度。测量值用于保证遵守限值,并控制和优化 DeNOx 装置。因此,可以通过应用现场气体测量来考虑石化行业的环境保护。
氮源氮是氨基酸和核酸的合成所需的。取决于生物体,氮,硝酸盐,氨或有机氮化合物作为氮来源。从添加到培养基生长因子(细菌维生素)的水中提供的氢和氧生长因子是有机化合物,例如氨基酸,嘌呤,嘧啶和维生素,细胞必须具有生长,但不能合成自身。矿物1。需要硫硫来合成含硫的氨基酸和某些维生素。2。磷磷是需要合成磷脂,核酸和辅酶的。3。跟踪元素
简单地说,绿色氢是通过使用可再生能量将水分成氢和氧气而产生的。绿色氨是由绿色氢制成的,其工艺也由可再生能源提供动力。绿色氢和氨的产生既有正面和负面的环境和社会影响。绿色氢(见表11.1)被视为全球向可持续能量和净零排放的全球温室自由能的主要载体。动量正在增长,以快速扩大绿色氢的产生,以满足IPCCC GHG减少靶标。它正在作为存储能源的一种选择(另请参阅第13章,有关其他储能选项),从具有基于氢的燃料的可再生能源可能会在长途运输(从拥有丰富能源资源的地区到数千公里远的地区)。以绿色氢的形式采用的绿色氨与绿色
