背景和目标:细菌群落在氮循环中起着至关重要的作用。氧化池是废水的天然处理系统,旨在促进某些细菌物种的生长和活性,从而去除水中的污染物。这些池塘中的氮循环涉及细菌通过生物过程转化氮化合物。某些细菌物种的存在或不存在会极大地影响这些池塘中氮循环的效率。本研究调查了氧化池中细菌与氮动力学(废水处理的关键组成部分)之间的关系。这项工作旨在确定氧化池中的细菌群落组成,研究细菌在氧化池中转化和去除废水中氮化合物的作用,并评估环境因素对氧化池中微生物群落和氮动力学的影响。这项研究是在泰国碧武里皇家发起的 Laem Phak Bia 环境研究与开发或 LERD 项目的氧化废水处理中进行的。方法:采集1~5个氧化塘水面30 cm深处的废水样品,分析温度、溶解氧、生化需氧量、硝酸盐、氨、凯氏氮等水质参数。采用Illumina Miseq二代测序技术对采集样品中的细菌16S核糖体核糖核酸进行检测。采用相关性检验进行统计分析。结果:氧化塘的温度、生化需氧量(1~5个塘)和溶解氧(2~5个塘)均在标准值范围内。5个氧化塘共鉴定出15个细菌门,其中变形菌门数量最多,占细菌总数的47.56%。结论:Novosphingobium 属(变形菌门)、Ammonia-11 属(疣微菌门)和 Vicinamibacteraceae 属(酸杆菌门)与氨、硝酸盐和总凯氏氮的关系最密切(R 2 = 0.9710、0.986、0.8124)。细菌种群是影响氮营养和水质的关键因素。Novosphingobium 参与去除废水中的氨,疣微菌门充当反硝化菌,而 Vicinamibacteraceae 可提高总凯氏氮水平。
8月19日,Jag Bahia 9更新了5.4-预处理筛查应包括全血数,身体健康病史和身体检查,这应包括ECG,体重,BMI和腰围测量,禁食血浆脂质,葡萄糖,葡萄糖,LFT,LFT,血压,血压和脉搏率。8月19日,Jag Bahia 9更新了6.1.2-氯氮平正在开处方标签,然后应向患者解释,应注册患者,以便在CPMS外使用CPMS,8月19日Jag Bahia 11更新了7.5-氯氮平的患者,至少应每年审查一年以上。这应包括药物审查,并考虑到患者&GP报告的治疗反应和公认的副作用。8月19日,jag bahia 13更新了10.1-在治疗的第一个月中,应至少每周评估心脏症状,低血压,便秘和体重增加。
•斯里兰卡(Sri Lanka)于2021年移居到肥料的有机源。•再生耕作鼓励人们摆脱强化肥料的使用。•世界人口的建模为今年的80亿,到2050年。•肥料在世界上喂食和衣服。
[1] N. W. Ashcroft,金属氢:高温超导体?,Phys Rev Lett 21,1748(1968)。[2] V. L. Ginzburg,宇宙中的超流量和超导性,苏联物理学USPEKHI 12,241(1969)。[3] L. Boeri,R。Hennig,P。Hirschfeld,G。Profeta,A。Sanna,E。Zurek,W。E. Pickett,W。E. Pickett,M。Amsler,R。Dias,M。I. Eremets等人,2021室 - 室温超导性超级保障路线图34,183002(202222222)。[4] A. P. Drozdov,M。I。Eremets,I.A. Troyan,V。Ksenofontov和S. I. Shylin,在硫氢系统高压的203开尔文处的常规超导性,Nature 525,73(2015)。[5] M. Somayazulu,M。Ahart,A。K。Mishra,Z。M. Geballe,M。Baldini,Y。Meng,Y。Meng,V。V。V. V. V. V. V. V. V. V. V. V. V. Hemley和R. J. Hemley,超过260 K高于260 K的证据,超过260 K,在巨大的超氢化物中,Megabar Pressure,Phys Rev Lett 122,022,027001(2019)。[6] A. P. Drozdov,P。P. Kong,V。S. Minkov,S。P. Besedin,M。A. Kuzovnikov,S。Mozaffari,L。Balicas,L。Balakirev,F。F. F. F. F. E. Graf,D。E. Graf,V。B. B. B. Prakapenka等人,在250 k的超级范围内,lanthanum hystrys hystrys hystry pressiver native pressiver native pressiver infernation natural pressery prastery natural pressery prestery prestery 5699999999(56)。[7] D. V. Semenok,A。G。Kvashnin,A。G。Ivanova,V。Svitlyk,V。Y。Fominski,A。V。Sadakov,O.A. Sobolevskiy,V。M。Pudalov,I。A. Troyan和A. R. Oganov,hydride thh10的161 K的超导性:合成和性能,今天的材料33,36(2020)。[8] W. Chen, D. V. Semenok, X. Huang, H. Shu, X. Li, D. Duan, T. Cui, and A. R. Oganov, High-Temperature Superconducting Phases in Cerium Superhydride with a T c up to 115 K below a Pressure of 1 Megabar , Phys Rev Lett 127 , 117001 (2021).[9] I. div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div> A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。 [10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>A. Troyan,D。V. Semenok,A。G. Kvashnin,A。V. V. Sadakov,O。 div>A. Sobolevskiy,V。M. Pudalov,A。G. Ivanova,V。B. Prakapenka,E。Greenberg,A。G. G. G. G. Gavriliuk等YH 6,Adv Mater 33,2006832(2021)。[10] P. Kong,V。S. Minkov,M。A. Kuzovnikov,A。P. Drozdov,S。P. Besedin,S。Mozaffari,L。 div>
曼彻斯特大学自然科学学院,曼彻斯特大学,M13 9PL,英国B化学系印度印度技术研究院哈拉格布尔,哈拉格布尔,哈拉格布尔,西孟加拉邦,721302,印度c国民石墨烯学院,曼彻斯特,曼彻斯特大学,曼彻斯特,M13 9PL,MANCERIENS,MANCERISIDE曼彻斯特,M13 9PL,英国E e可持续能源工程系,印度坎普尔,坎普尔,坎普尔,208016,印度F曼彻斯特生物技术学院,曼彻斯特曼彻斯特大学,曼彻斯特大学,M13 9PL 9PL,英国G化学系,印度坎普尔(Kanpur),坎普尔(Kanpur作者 *与Ashok.keerthi@manchester.ac.uk,kbiradha@chem.iitkgp.ac.in,dinachandrasingh.mayanglambam@manchester.ac.ac.uk关键字:共价有机框架,阴极材料,六余烯基,li-inyleny countries,/divaliese forightions,
摘要。森林生态系统的氮(n)状态的变化可以通过改变土壤有机含量(SOM)分解,土壤酶活性和植物 - 土壤相互作用,直接和间接地影响其car(c)隔离潜力。但是,链接的C – N周期和SOM衰减的模型表示未通过实验数据得到很好的验证。在这里,我们使用来自现有实验性森林的长期全挥发性研究的大量数据来比较两个土壤模型的n扰动的响应,这些响应以不同的方式代表分解动态的n扰动性(第一阶衰变与微生物显式脱粒的重新确定重新介绍了Michaelis-Michaelis-enteren Kinetics)。这两个土壤模型与提供相同输入数据的常见植被模型耦合。对研究地点测得的N添加的关键反应包括植物分配的转移,以有利于木质生物量在地下碳输入上,土壤呼吸减少,颗粒有机含量(POM)的积累以及土壤C:N比的增加。植物模型并未捕获植物C分配中经常观察到的转移,而n添加了n添加,从而导致土壤反应的前提不佳。我们修改了植物c分配方案的参数,以促进木材生产,而不是添加n个添加物,从而显着改善了植被和土壤呼吸的重音。此外,为了引起土壤C库存的增加和c:n比的增加,如所观察到的,我们修改了土壤模型中POM的衰减速率。通过这些修改,两种模型均捕获了负面的土壤呼吸和阳性土壤C库存反应,
摘要 - 大多数大规模氨的产生通常是关于天然气或煤炭的,这会导致有害的碳污染进入大气。研究了一个小规模“绿色”氨植物的生存能力,其中可再生电力分别通过电解和空气液化为Haber-Bosch系统提供氢和氮,以合成氨。绿色氨植物可以作为对电力分配系统的需求响应载荷,并通过氨中的化学能量存储提供长期的能量存储。在本文中提出了电力分配系统和电力运行的氨植物的协调操作模型。案例研究是对修改的PG&E 69节点电分配系统以及小规模氨植物进行的。的结果表明,氨植物可以充分充当需求响应资源,并有效地影响分布位置边际价格(DLMP)。
过量的氮对明尼苏达州的地表水和地下水以及其他管辖区的下游水域都是有害的。虽然据估计,明尼苏达州的废水部门向明尼苏达州地表水排放的总氮 (TN) 不到 10%,但废水处理厂可能会向单个水体排放大量的硝酸盐和氨氮,特别是在没有太多其他来源或流量低的情况下。这项废水氮减排和实施战略 (战略) 是由 MPCA 与利益相关者协商制定的,旨在实现废水部门保护和恢复明尼苏达州和下游水体所需的氮减排。废水氮减排是明尼苏达州营养物减排战略 (NRS) 的一个组成部分,该战略还涉及非点源。
Uniper和Greenko Zeroc Private Limited,Greenko Group的绿色分子生产部门,今天宣布签署一份理解备忘录(MOU)和Uniper的术语负责人,以便Uniper进行独家谈判,以征求Greenko Zeroc Zeroc Zeroc immonia Production in kakakindada的Greenko Zermmonia of Green Ammonia的独家谈判。在谅解备忘录,格林科和Uniper的领导下,打算根据供应和购买协议的第一个创新定价,供应和任期结构,以根据条款的负责人每年为250,000吨的绿色氨(GASPA)谈判。Greenko的Kakinada项目是一种多相绿色氨的生产和出口设施,到2027年,绿色氨的生产能力高达1 MTPA。Greenko在Kakinada的设施的第一阶段是基于由2.5 GW的2.5 GW可再生资产在印度生产的电力(RTC)可再生电力的电解器,并由其Pinnapuram集成的可再生能源存储工厂(IRESP)加强。谅解备忘录是在班加罗尔的2023年印度能源周的印度能源周期的联盟和天然气工会部长Hardeep Singh Puri先生在场的。niek den Hollander,Uniper的CCO:“脱碳是我们这个时代的主要挑战之一,需要快速行动 - 因此,Uniper很乐意为与我们的合作伙伴Greenko一起加速能源过渡。Greenko Kakinada项目是一个非常有前途的机会,可以为德国提供绿色氨和确保低碳氢产品的供应。我们期待与格林科(Greenko)进行这项交易”我们对合作感到非常兴奋!”设定该项目的关键区别是泵储存厂的整合,以平衡可再生生产的间歇性和季节性,并实现高达85%以上的高年度植物负载系数,从而使绿色氨的灵活且可派遣的绿色氨竞争性供应。除了绿色氨外,Uniper和Greenko还打算合作将类似的柔性可再生电力部署到其他氢产品(例如E-甲醇和可持续航空燃料)上。Greenko首席执行官兼董事总经理首席执行官(首席执行官)Anil Chalmalasetty:“格林科正在为低碳经济提供脱碳解决方案。我们正在与约翰·科克里尔(John Cockerill)的世界一流技术合作伙伴合作,并将在印度共同开发大型绿色分子项目。,我们非常高兴通过为我们的项目提供这项选择协议与Uniper合作,该协议最终将取代液化天然气进口并加强印度的绿色分子野心,这是一项更广泛的可再生能源计划的一部分,该计划将使印度运行世界上最大的能源过渡计划。” Uniper中东首席执行官John Roper:“格林科一直是该地区绿色分子市场上最敏捷的球员之一。与Uniper作为绿色氨合作伙伴的Offtake合作伙伴,该合作伙伴关系将受益于通过Uniper的全球商品交易和物流网络添加的额外值。
