摘要 . 氨由于其无碳特性,是一种很有前途的替代化石燃料的替代品。本研究调查了印度尼西亚灰色、蓝色和绿色氨生产的技术经济和环境方面。在这方面,已经开发了一个基于电子表格的决策支持系统来分析每种氨生产方式的平准成本及其对各种参数的成本敏感性。分析结果显示,灰色氨的平准成本为每吨 297 美元(美元),受天然气价格和碳税的强烈影响。蓝色氨是最稳定的生产选择,平准成本为每吨 390 美元,受天然气价格和碳封存相关费用的影响。另一方面,绿色氨的平准成本在每吨 696 至 1,024 美元之间,主要受电解器的选择、可再生能源的成本以及维护和运营支出的影响。此外,研究还显示,灰氨和蓝氨生产每吨氨分别排放 2.73 吨和 0.28 吨二氧化碳当量,而绿氨的现场碳排放量可以忽略不计。总体而言,这项研究强调了利用地热或水力可再生能源生产绿氨的潜力,这是实现印度尼西亚电力、工业和运输部门脱碳的可行解决方案。研究还提供了旨在克服该国发展绿氨工厂现有障碍的若干政策建议。
依普利酮 (Inspra ® ) 依他尼酸 (Edecrin ) 呋塞米 (Lasix®) 氢氯噻嗪 (Microzide , Esidrix®) 吲达帕胺 (Lozol ) 美托拉宗 (Zaroxolyn ) 甲唑胺 甲氯噻嗪 美托拉宗 (Zaroxoxlyn ) 螺内酯 (Aldactone ) 螺内酯 / 氢氯噻嗪 (Aldactazide ) 托拉塞米 (Demadex ) 氨苯蝶啶 (Dyrenium ) 氨苯蝶啶 / HCTZ (Dyazide , Maxzide ) 他汀类药物 阿托伐他汀 (Lipitor) 氟伐他汀 (Lescol) 洛伐他汀(Mevacor) 匹伐他汀(Livalo) 普伐他汀(Pravachol) 瑞舒伐他汀(Crestor) 辛伐他汀(Zocor)
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2025年2月13日。 https://doi.org/10.1101/2025.02.13.638192 doi:Biorxiv Preprint
1 研究背景与目的· ... ·· ... ·· ... 20 4.4 氨的风险 ·· ... 27 5.3 氨气地上储存设施 ······································ 28 5.4 氨气作为汽车燃料 ··························································· 33 5.5 与船舶安全特性的比较 ···
免责声明 本出版物及其中的材料均按“原样”提供。IRENA 已采取一切合理的预防措施来验证本出版物中材料的可靠性。但是,IRENA 及其任何官员、代理、数据或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对于使用本出版物或此处材料的任何后果,他们不承担任何责任或义务。此处包含的信息不一定代表 IRENA 所有成员的观点。提及特定公司或某些项目或产品并不意味着 IRENA 认可或推荐它们优于未提及的其他类似性质的公司或项目或产品。此处使用的名称和材料的呈现方式并不意味着 IRENA 对任何地区、国家、领土、城市或地区或其当局的法律地位,或对边界或边界的划定发表任何意见。
CCS Carbon capture and storage CCUS Carbon capture, utilisation and storage COAG Council of Australian Governments CSIRO Commonwealth Scientific and Industrial Research Organisation DBNGP Dampier Bunbury Natural Gas Pipeline DC Direct Current DG Dangerous Goods DNI Direct normal irradiance EP Environmental Protection EPA Environmental Protection Authority EPBC Environment Protection and Biodiversity Conservation EPC Engineering, Procurement and Construction EPCM Engineering, Procurement and建筑管理ERIA ERIA经济研究所在东亚和东亚ESG环境,社会和治理饲料前端工程和设计FP FREMANTLE POR GA GA PORT GA GHI GHI GHI全球水平辐照度GIA通用行业GNIC GEALDTON到Narngulu港口Narngulu港口环境HV高压IEA国际能源局ISO国际标准化组织
4. Zhang Q、Grossmann IE。工业需求侧管理的规划和调度:进展与挑战。替代能源与技术。Cham:Springer;2016:383-414。5. Schäfer P、Westerholt HG、Schweidtmann AM、Ilieva S、Mitsos A。基于模型的能源密集型工艺初级平衡市场竞价策略。Comput Chem Eng。2018;120:4-14。6. Baldea M。将化学工艺用作电网级储能设备。引自:Kopanos GM、Liu P、Georgiadis MC 编。能源系统工程进展。Cham:Springer;2017:247-271。7. Mitsos A、Asprion N、Floudas CA 等。新原料和能源工艺优化面临的挑战。 Comput Chem Eng。2018;113:209-221。8. Appl M. 氨。在:Elvers B,编辑。Ullmann 工业化学百科全书。2000 年。https://onlinelibrary.wiley.com/doi/10.1002/14356007.o02_o11。9. Nørskov J、Chen J、Miranda R、Fitzsimmons T、Stack R。可持续氨合成——探索与发现替代、可持续氨生产工艺相关的科学挑战 [Tech. Rep.]。美国能源部;2016 年。https://www.osti. gov/servlets/purl/1283146。访问日期:2017 年 11 月 20 日。10. Demirhan CD、Tso WW、Powell JB、Pistikopoulos EN。通过工艺合成和全局优化实现可持续氨生产。AIChE J。2018;65(7):e16498。11. Guillet N、Millet P。碱性水电解。引自:Godula-Jopek A 编辑。氢气生产:通过电解。Weinheim:威利在线图书馆;2015:117-163。12. Cheema II、Krewer U。电转氨哈伯-博世工艺设计的操作范围。RSC Adv。2018;8(61):34926-34936。13. Reese M、Marquart C、Malmali M 等人。小规模哈伯工艺的性能。 Ind Eng Chem Res。2016;55(13):3742-3750。14. Millet P. PEM 水电解。引自:Godula-Jopek A 编辑。电解制氢。Weinheim:Wiley Online Library;2015:63-114。15. Petipas F、Fu Q、Brisse A、Bouallou C。固体氧化物电解池的瞬态运行。国际氢能杂志。2013;38(7):2957-2964。16. Mougin J. 高温蒸汽电解制氢。氢能纲要。剑桥:爱思唯尔;2015:225-253。 17. Wang G, Mitsos A, Marquardt W. 氨基能源存储系统的概念设计:系统设计和时不变性能。AIChE J。2017;63(5):1620-1637。18. Chen C, Lovegrove KM, Sepulveda A, Lavine AS。用于氨基太阳能热化学能源存储的氨合成系统的设计和优化。Sol Energy。2018;159:992-1002。19. Allman A, Daoutidis P. 风力发电氨发电的优化调度:关键设计参数的影响。Chem Eng Res Des。2017;131:5-15。 20. Allman A、Palys MJ、Daoutidis P. 基于调度的时变运行系统优化设计:风力发电氨案例研究。AIChE J。2018;65(7):e16434。21. Du Z、Denkenberger D、Pearce JM。太阳能光伏供电的现场氨生产用于氮肥。Sol Energy。2015;122:562-568。22. Allman A、Tiffany D、Kelley S、Daoutidis P。结合传统和可再生能源发电的氨供应链优化框架。AIChE J。2017;63(10):4390-4402。23. Palys MJ、Allman A、Daoutidis P。探索模块化可再生能源供电的氨生产的优势:供应链优化研究。Ind Eng Chem Res。2018;58(15):5898-5908。24. Ghobeity A、Mitsos A。太阳能接收器和储存器的最佳设计和运行。J Sol Energy Eng。2012;134(3):031005。 25. Yuan Z, Chen B, Sin G, Gani R. 基于优化的化工过程同步设计和控制的最新进展. AIChE J. 2012;58(6):1640-1659.
前两个相互联系,并与氢的来源相关。Haber-Bosch工艺需要氢,并且可以来自任何地方,包括绿色氢。作为一种实际问题,经济上获得大量氢的最简单方法是通过SMR,它将碳副产品释放到大气中。这是灰色氢,它用于所有氨过程的大部分。它是与氨相关的碳排放的主要来源,但不是唯一的碳排放。因此,实施正确的自动化和测量仪器技术对于缓解策略至关重要,可以帮助提高能源效率并减少排放。
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 3 3 1 1 2 1 1 1 丙酮 1 2 1 1 3 1 3 3 苯乙酮 2 2 2 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 4 2 2 2 3 3 1 3 乙炔 3 2 1 1 1 1 1 2 空气 (100 °C) 1 2 1 1 1 1 1 空气 (150 °C) 1 2 1 1 3 3 1 3 空气 (200 °C) 1 2 1 1 3 3 1 3 乙酸铝4 4 4 4 2 1 3 2 溴化铝 4 4 4 4 1 1 1 1 氯化铝(10%) 3 3 3 3 1 1 1 1 氯化铝(100%) 3 2 2 2 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 3 2 2 1 1 1 1 铝盐 4 4 4 4 1 1 1 1 硫酸铝 2 3 2 3 1 1 1 1 明矾(NH3-Cr-K) 4 4 4 4 1 1 3 1 氨(无水) 3 2 1 1 2 1 3 1 氨(冷,气体) 3 2 4 1 1 1 3 1 氨水(热、气态) 3 2 4 1 3 2 3 2 碳酸铵 3 2 3 3 3 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 3 1 2 3 1 3 1 硝酸铵 3 3 1 1 1 1 4 1 过硫酸铵溶液 3 3 1 2 3 1 4 4 磷酸铵(一元、二元、三元) 3 3 3 2 1 1 4 1 铵盐 4 4 4 4 1 1 3 1 硫酸铵 3 3 2 3 1 1 3 1 硼酸戊酯 4 4 4 4 1 3 1 1 戊基氯 4 2 1 1 4 3 1 2 戊基氯萘 4 4 4 4 3 3 1 3 戊基萘 4 4 4 4 3 3 1 3 动物油(猪油) 2 2 2 2 1 2 1 2 Aroclor 1248 2 3 3 3 3 2 1 3 Aroclor 1254 2 3 3 3 3 2 1 3 Aroclor 1260 2 3 3 3 1 4 1 1 芳族燃料 -50% 4 4 4 4 2 1 1 3 砷酸 3 3 1 1 1 2 1 1 沥青 3 3 1 1 2 3 1 2 ASTM 油,n° 1 1 1 1 1 1 3 1 1 ASTM 油,n° 2 1 1 1 1 1 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 3 ASTM 油,编号 4 1
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1