疟原虫引起的感染给世界上最贫穷的社区带来了巨大的负担。我们迫切需要具有新作用机制的突破性药物。作为一种经历快速生长和分裂的生物体,疟原虫恶性疟原虫高度依赖蛋白质合成,而蛋白质合成又需要氨酰基-tRNA 合成酶 (aaRS) 为 tRNA 充电相应的氨基酸。蛋白质翻译是寄生虫生命周期所有阶段所必需的;因此,aaRS 抑制剂具有全生命周期抗疟活性的潜力。本综述重点介绍了使用表型筛选、靶标验证和结构引导药物设计来识别有效的疟原虫特异性 aaRS 抑制剂的努力。最近的研究表明,aaRS 是一类 AMP 模拟核苷磺酰胺的易感靶标,这些靶标通过一种新颖的反应劫持机制靶向酶。这一发现开辟了生成不同 aaRS 的定制抑制剂的可能性,从而提供了新的药物线索。
口服时,甲硝唑的耐受性良好。最常见的不良反应是指胃肠道,尤其是恶心,有时伴有头痛,厌食症以及偶尔呕吐,腹泻,上腹疼痛或痛苦或痛苦以及腹部痉挛;便秘,味道障碍和口腔粘膜炎也有报道。金属,鲜明,不愉快的味道并不罕见。胰腺炎病后戒断后的胰腺炎病例已被报道。 克罗恩病患者的胃肠道和某些肠外癌的发生率增加。 如果患者接受甲硝唑饮用含酒精的饮料,他们可能会遭受腹部痛,恶心,呕吐,冲洗或头痛。 也已经报道了酒精饮料味道的修改。胰腺炎病后戒断后的胰腺炎病例已被报道。克罗恩病患者的胃肠道和某些肠外癌的发生率增加。 如果患者接受甲硝唑饮用含酒精的饮料,他们可能会遭受腹部痛,恶心,呕吐,冲洗或头痛。 也已经报道了酒精饮料味道的修改。克罗恩病患者的胃肠道和某些肠外癌的发生率增加。如果患者接受甲硝唑饮用含酒精的饮料,他们可能会遭受腹部痛,恶心,呕吐,冲洗或头痛。也已经报道了酒精饮料味道的修改。
细菌抗生素持久性是一种现象,即细菌暴露于抗生素后,大多数细菌死亡,而一小部分细菌进入低代谢持久状态并能够存活。一旦去除抗生素,持久性细菌群落可以复苏并继续生长。这种现象与几种不同的分子机制和途径有关。细菌抗生素持久性的一个常见机制可能是蛋白质合成的扰动。为了研究这种机制,我们鉴定了四种不同的 metG 突变体,以确定它们是否能够提高抗生素持久性。两种 metG 突变体编码 MetRS 催化位点附近的变化,另外两种突变体编码反密码子结合域附近的变化。metG 中的突变尤其令人感兴趣,因为 MetRS 负责启动 tRNA Met 和延长 tRNA Met 的氨酰化,这表明这些突变体可能影响翻译起始和/或翻译延长。我们观察到所有 metG 突变体都提高了抗生素持久性水平,而野生型 metG 的转录水平也降低了。虽然 MetRS 变体本身不会对 MetRS 活性产生影响,但它们确实降低了翻译率。我们还观察到 MetRS 变体影响同型半胱氨酸的校对机制,并且这些突变体的生长对同型半胱氨酸高度敏感。结合以前的研究结果,我们的数据表明,细胞 Met-tRNA Met 的减少
作为几个家伙(Eikeng and Rogneby,2021),他曾经引用过另一个人(Bob Dylan,1963年),他们写道,他们是A-changin'。确实是。世界目前正在进行重大清理,脱碳在议程之上。在这方面,绿色氨的大规模生产用于替代常规化石氨的氨近期引起了人们的兴趣。今天的氨目前负责全球CO 2排放量的1%,几乎所有氨用于肥料的产生。用绿色氨取代基于化石燃料的氨,从空气,水和可再生能源中合成,可能会大大减少发射。除了清理肥料工业外,绿色氨还具有随着时间的推移(能量存储)和空间(能量传递)(能量转移)的系统能量平衡的潜力,因此有可能成为从化石燃料到可再生能源的全球能源过渡的重要组成部分。
与饱和脂肪酸合成的脂肪酰基 - 酰基载体蛋白硫酯酶B(FATB)基因在脂肪酸含量和储存脂质的组成中起着重要作用。然而,FATB在大豆中的作用(甘氨酸最大)的特征很差。本文提出了10个假设FATB成员的初步生物信息学和分子生物学研究。结果表明,GMFATB1B,GMFATB2A和GMFATB2B包含许多参与防御和压力反应以及分生组织组织表达的响应元素。此外,GMFATB1A和GMFATB1B的编码序列比其他基因明显更长。它们的表达在生长过程中在大豆植物的不同器官中有所不同,GMFATB2A和GMFATB2B显示出较高的相对表达。此外,亚细胞定位分析表明,它们主要存在于叶绿体中。Overexpression of GmFATB1A , GmFATB1B , GmFATB2A and GmFATB2B in transgenic Arabidopsis thaliana plants increased the seed oil content by 10.3%, 12.5%, 7.5% and 8.4%, respectively, compared to that in the wild-type and led to signi fi cant increases in palmitic and stearic acid content.因此,这项研究增强了我们对大豆中FATB家族的理解,并为随后改善大豆质量提供了理论基础。
吡咯赖氨酸-tRNA 合成酶(PylRS)通常用于将非规范氨基酸(ncAA)位点特异性掺入蛋白质中。最近,Methanomethylophilus alvus PylRS(Ma PylRS)的活性位点经过合理设计,以扩大其底物兼容性,从而能够掺入难以结合的 ncAA。然而,尚未报道活性位点以外的可增强 Ma PylRS 酶特性的突变。我们利用噬菌体辅助非连续进化(PANCE)来进化 Ma PylRS,以有效掺入 N ε -Boc- L -赖氨酸(BocK)。定向进化产生了活性位点外的几种突变,这些突变大大提高了酶的活性。我们结合最有效的突变来生成一种新的 PylRS 变体(PylRS opt),它对几种赖氨酸和苯丙氨酸衍生物具有高活性和选择性。 PylRS opt 中的突变可用于增强先前设计的 PylRS 构建体,例如 Ma PylRS N166S,并且 PylRS opt 适用于需要双 ncAA 掺入的应用,并可显著提高这些目标蛋白的产量。
简而言之,绿氢是利用可再生能源将水分解成氢和氧而产生的。燃烧时只会排放水,但生产氢气的成本可能很高。绿氨由绿氢制成,该过程也由可再生能源提供动力。生产绿氢和绿氨对环境和社会有积极和消极的影响。绿氢(见表 14.1)被视为全球向可持续能源和净零排放经济转型的关键推动因素。开发绿氢作为清洁能源解决方案的势头日益增强。它正在成为一种储存可再生能源的主要选择(其他能源储存选择另见第 13 章),氢基燃料可以长距离运输——从能源资源丰富的地区运输到数千公里外的能源匮乏地区。作为一种液体燃料,以绿色氢为原料的绿氨作为运输媒介具有许多优势。在联合国气候大会 COP26 上,绿色氢能被列为多项减排承诺的一部分,作为重工业脱碳的手段,并可作为长途货运、船运和航空燃料。各国政府和工业界都承认氢能是净零经济的重要支柱 1。联合国旨在降低绿色氢能成本的倡议“绿色氢能弹射器”宣布,其绿色电解槽目标将从 2020 年设定的 25 吉瓦增加近一倍,达到 2027 年的 45 吉瓦。欧盟委员会通过了一系列立法提案,旨在通过促进氢气等可再生和低碳气体的使用来实现欧盟天然气市场的脱碳,并确保所有欧洲公民的能源安全。阿拉伯联合酋长国的新氢能战略旨在到 2030 年占据全球低碳氢能市场的四分之一。最近,日本宣布将从其绿色创新基金中投资 34 亿美元,用于加速绿色氢能的研发和推广。未来 10 年氢气的使用情况 2 。预计到 2040 年,鉴于可再生能源规模扩大、成本降低,以及生产棕色、灰色和蓝色氢气的成本增加,绿色或低碳氢气将具有成本竞争力 3 。来自核能的粉红氢气是未来氢气生产的另一种选择 4 。绿色氨的生产被推广为向净零二氧化碳排放过渡的另一种选择。它在这方面的用途包括:
氨氧化古细菌(AOA)是微生物群落的无处不在成分,并在某些土壤中占据了硝化的第一阶段。当我们开始了解土壤病毒动力学时,我们对那些感染硝基菌的人的组成或活性或其影响过程的潜力不了解。这项研究旨在表征在两种硝化pH的硝化土壤中感染自身噬菌AOA的病毒,这是通过通过DNA稳定的异位素探测和化合物分析转移了同化的CO 2衍生的13 C从宿主到病毒的13 C。将13 C掺入低GC MOL%AOA中,病毒基因组增加了CSCL梯度中的DNA浮力密度,但导致与富含非增强的高GC MOL%基因组共同移民,减少了测序depth和Contig组装。因此,我们开发了一种杂种方法,其中AOA和病毒基因组是从低浮力DNA组装而成的,随后映射13 C同位素富集的高浮力密度DNA读取以识别AOA的活性。元基因组组装的基因组在两种土壤之间是不同的,并且代表了广泛的活性种群。识别64个AOA感染病毒运营分类单元(投票),与先前特征的原核生物病毒没有明确的相关性。这些投票在土壤之间也有所不同,其中42%的富含宿主的13 C富集。大多数人被预测为能够溶裂性,辅助代谢基因包括一种AOA特异性多孔氧化酶,表明感染可能会增强对中央代谢功能所必需的铜摄取。这些发现表明AOA的病毒感染可能是硝化过程中经常发生的过程,可能会影响宿主生理和活性。