注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
注意:请注意,此文档可能不是记录的版本(即已发布的版本)。作者手稿版本(作为同行评审或同行评审后接受的出版物接受的子手稿版本)可以通过出现出版商品牌和/或排便中的出现来确定。如果有任何疑问,请参考已发布的来源。
(2023年8月12日收到; 2024年4月19日修订; 2024年4月21日接受)。摘要:在各种工业应用中,碳钢的腐蚀是一个重要的问题,有效的腐蚀抑制剂的发展对于缓解此问题至关重要。近年来,由于其独特的特性和环保性,生物活性金属复合物已成为有前途的腐蚀候选者。旨在研究腐蚀抑制剂的活性和有效性。通常,抑制剂在表面吸附特性上工作。在这里,我们专注于通过理论方法研究金属表面上的抑制剂吸附活性。Schiff碱化合物与金属表面的相互作用非常好。抑制剂的相互作用是通过密度功能理论研究借助 *dxvvldq dqg $ ffhou \ v 0dwhuldo 6wxglr)urp wkh fdofxodwlrq ri +202 /802 /802ǻ(ǻ1dqg fukui seltifity confffect function 2 complect formity conffffle 理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。理论计算的很短的时间显然告诉我们有关Schiff碱基复合物的抑制剂活性。
碳氮比 (C/N) 除少数例外,氮原子数不应超过有机叠氮化物中的碳原子数。尽管可以少量合成一些 C/N 比在 1 和 3 之间的叠氮化物,但应尽快使用或淬灭叠氮化物。叠氮化物应储存在 -18 °C 且避光的环境中(最好放在塑料琥珀色容器中)。浓度不应超过 1 M。六规则评估有机叠氮化物稳定性的另一种方法是“六规则”,该规则规定每个能量官能团的碳原子数不应少于六个。每个能量官能团(叠氮化物、重氮、硝基等)六个碳原子(或其他大小大致相同的原子)可提供足够的稀释度,使化合物相对安全。每个官能团的碳原子数少于六个可能导致材料具有爆炸性。
摘要。这项研究通过微波辅助覆层和15%的粒子混合物在SS-304底物上提出了一种革命性的方法来增强表面增强。进行了细致的准备步骤,包括底物清洁和预热,以确保最佳的粘附和涂料质量。使用木炭作为振动者材料的微波混合动力加热,促进了粉末混合物的快速和均匀加热,而纯石墨板在此过程中阻止了污染。使用特定功率和频率设置的多模微波涂抹器进行了实验,从而导致最佳涂层形成的受控加热。通过SEM图像说明了微波辅助的覆层过程的精度,揭示了整个底物的覆层颗粒的均匀分布。此外,观察到表面硬度和耐磨性的显着改善,表面硬度增加了44.67%,低磨损速率为0.0020 mm3/m。这些发现突出了开发的覆层技术在增强SS-304底物的机械性能和耐磨性方面的有效性,为其在各种行业中的潜在应用铺平了道路,这些行业需要在滑动接触条件下可靠的表面保护和耐用性。
基于自我成像效应[1],多模式干涉仪(MMI)可以用作光束拆分器,这是光子积分电路的基本构建块。MMI与Y分支和方向耦合器相比,由于其定义明确的振幅,相位和出色的公差[2,3],提供了卓越的性能。因此,MMI在Mach-Zehnder干涉仪(MZIS)[4],分裂和组合器[5,6],极化束分裂器[7]中找到应用。与MMIS尺寸降低或性能提高有关的研究已发表[8-11]。最近,在SOI上使用MMI设备的次波光栅在内的设计表现出了巨大的承诺[12,13]。次波长光栅(SWGS)是光栅结构,它利用小于波长的光向音高[14],抑制衍射效应并表现出各向异性特征[12]。通过工程化各向异性折射率,SWG已在许多应用中使用,例如纤维芯片表面和边缘耦合器[15-17],微功能波导[18],镜片[19],波导cross [20],多路复用器[17,21,22],相位移动器[23]和Optical Shifters [23]和Optical Sheifters [23] [23] [24] [24] [24] [24]。使用这种元物质,SWG MMI设备的带宽已在SOI平台上显着扩展[12,13],这使包括波长二线二线器[25],宽带偏振器梁拆分器[26] [26]和双模式束分配器有益于广泛的应用[27]。砖SWG结构以减轻制造分辨率的要求[28,29]。在SOI平台旁边,其他CMOS兼容材料,例如氮化硅,氮化铝和硝酸锂引起了很多关注。氮化硅(Si 3 N 4)由于其超低损失[30],非线性特征[31],从400 nm到中红外[32]脱颖而出[31]。像SOI平台一样,人们对在硅硅平台内实现高性能MMI设备也非常感兴趣。在本文中,我们将SWG MMI理论从SOI平台扩展到其他集成的光子平台,专门针对300 nm厚的氮化硅平台。我们的目标是设计和优化具有较小脚印和宽操作的SWG MMI设备
摘要:最近的计算研究预测了许多新的三元氮化物,揭示了这一尚未充分探索的相空间中的合成机会。然而,合成新的三元氮化物很困难,部分原因是中间相和产物相通常具有较高的内聚能,会抑制扩散。本文,我们报告了通过 Ca 3 N 2 和 M Cl 4(M = Zr、Hf)之间的固态复分解反应合成两个新相,钙锆氮化物(CaZrN 2 )和钙铪氮化物(CaHfN 2 )。虽然反应名义上以 1:1 的前体比例通过 Ca 3 N 2 + M Cl 4 → Ca MN 2 + 2 CaCl 2 进行到目标相,但以这种方式制备的反应会产生缺钙材料(Ca x M 2 − x N 2 ,x < 1)。高分辨率同步加速器粉末 X 射线衍射证实,需要少量过量的 Ca 3 N 2 (约 20 mol %) 才能产生化学计量的 Ca MN 2 。原位同步加速器 X 射线衍射研究表明,名义化学计量反应在反应途径早期产生 Zr 3+ 中间体,需要过量的 Ca 3 N 2 将 Zr 3+ 中间体重新氧化回 CaZrN 2 的 Zr 4+ 氧化态。对计算得出的化学势图的分析合理化了这种合成方法及其与 MgZrN 2 合成的对比。这些发现还强调了原位衍射研究和计算热化学在为合成提供机械指导方面的实用性。■ 简介
单原子催化是当代科学中至关重要的领域,因为它具有出色的结合均匀和异质催化的领域的能力。铁和锰金属酶在自然界中具有有效的C- H氧化反应有效,激发了科学家在人工催化系统中模仿其活性位点。在此,成功地使用了一种简单而多功能的阳离子交换方法来稳定Poly(Heptazine Imides)(PHI)中的低成本铁和锰单原子。所得材料被用作甲苯氧化的光催化剂,表现出对苯甲醛的显着选择性。然后将方案扩展到不同底物的选择性氧化,包括(固定的)烷基芳烃,苄基醇和硫酸盐。详细的机理研究表明,含铁和锰的光催化剂通过形成高价值M o物种通过类似的机制来起作用。操作X射线吸收光谱(XAS)用于确认形成高价值铁和锰氧化物种,通常在参与高度选择性C- H氧化的金属酶中发现。
市场新闻 6 智能手机出货量将在 2023 年第三季度小幅下滑后复苏 微电子新闻 8 CML 完成对微波技术的收购 宽带隙电子新闻 10 DENSO 和三菱电机向 Coherent 的 SiC 部门投资 10 亿美元 • Soitec 启动 SmartSiC 晶圆生产工厂 • J2 和 HKSTP 在香港建立第一家 SiC 晶圆厂 • onsemi 完成韩国 SiC 晶圆厂扩建 • 英飞凌完成对 GaN Systems 的收购 • 英飞凌签署多年期协议,为现代/起亚供应电源半导体 • 美国国防部为北卡罗来纳州立大学牵头的“CLAWS”微电子公共区域创新中心拨款 3940 万美元 • GlobalFoundries 获得美国政府 3500 万美元资助,以加速 200 毫米 GaN-on-Si 芯片的生产 • 佛蒙特大学-GF 联盟被指定为技术中心 • Element Six 入选美国国防部 LADDIS 计划 • 首款 JEDEC 标准顶部冷却表面贴装 TOLT GaN晶体管 • 东京农工大学和日本酸素公司通过MOVPE实现高纯度Ga 2 O 3薄膜的高速生长 材料和加工设备新闻 27 Riber的MBE 49 GaN将与MOCVD竞争200mm GN-on-Si • ELEMENT 3–5的ACCELERATOR 350K为批量生产提供单晶AlN • Aehr的收入同比几乎翻了一番 LED新闻 32 Mojo Vision的A轮融资几乎翻了一番,达到4350万美元 • NS Nanotech获得100万美元NSERC资助,用于开发纳米级LED和激光器 • ams OSRAM筹集22.5亿欧元以满足2025/26年的融资需求 光电子新闻 38 SuperLight Photonics在与DeepTechXL和oost NL的投资轮中获得种子资金 光通信新闻 40 ECOC 2023的新闻 • Coherent和Kinetic延长合作伙伴关系以启用网络边缘的 100G 服务 • OpenLight 与 Spark 合作扩展设计服务 • imec 推出 SiGe BiCMOS 光接收器,总数据速率达到 200Gbps 光伏新闻 50 NREL 创下 D-HVPE 生长的单结 GaAs 电池 27% 的效率记录
碳通过晶格逐渐溶解,最初形成亚表面,最终形成块状碳化物相。[12,29] 对于炔烃半加氢反应,PdC x 相通过抑制烷烃的过度加氢,提高了烯烃的选择性。[12,13,18,22,29] 这种对选择性的影响是多方面的。首先,最上层阻止氢气在亚表面聚集。[13] 此外,现有溶解氢通过碳化物相到表面的流动性降低。[22,12] 最后,碳化物相增加了从进料中吸附更多碳氢化合物的能垒。[29] 在低转化率下,炔烃的表面毒化作用也是高选择性的原因。[18] 选择性提高的一些实例包括乙炔、炔丙和 1-戊炔的半加氢。 [12,22,28,29]