Wensheng Yan 5 , Tao Zhu 1,4,12 , Lin Gu 1,2,12 , Scott A. Chambers 6 , Sujit Das 13 , Gang-Qin Liu 1,2,12 ,
摘要:托有室温单光子发射器(SPE)的二维六角硼(HBN)有望用于量子信息应用。朝着HBN实际应用的重要一步是按需,位置控制的SPE。报告的用于确定性创建HBN SPE的策略要么依赖于与综合光子学不兼容的基材纳米图案,要么利用可能引入不可预测的HBN损害或污染的辐射源。在这里,我们报告了一种无辐射和光刻的途径,以确定性地通过纳米引导使用原子力显微镜(AFM)激活HBN SPE。该方法适用于二氧化硅 - 硅底物上的hbn扁曲,可以很容易地集成到片上光子设备中。对于多个凹痕尺寸,所达到的SPE收率高于30%,并且在400 nm左右的凹痕显示最大产量为36%。我们的结果标志着HBN SPE与光子和等离子设备的确定性创建和整合的重要一步。关键字:HBN,单光子发射器,原子力显微镜,纳米凹痕,片上积分■简介
无机氮化物纳米材料因具有新颖的电化学活性和高化学稳定性而在可再生能源应用领域引起了广泛关注。对于不同的可再生能源应用,最佳氮化物相和纳米结构存在许多可能性和不确定性,这进一步促进了氮化物纳米材料的可控制备的探索。此外,与具有块体或陶瓷结构的传统氮化物不同,氮化物纳米材料的合成需要更精确的控制以保证目标纳米结构以及相纯度,这使得整个合成仍然是一个挑战。在这篇小型综述中,我们主要总结了无机氮化物纳米材料的合成方法,包括化学气相沉积、自蔓延高温合成、固相复分解反应、溶剂热合成等。从纳米结构的角度来看,近年来,几种具有纳米多孔、二维、缺陷、三元结构和量子点等纳米结构的新型氮化物表现出独特的性能并受到广泛关注。本文还讨论了功能无机氮化物设计和合成的未来研究前景。
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。
由于在高频和高功率固态微波电源设备中的巨大潜在应用,基于GAN的高电子迁移式晶体管(HEMTS)在过去的二十年中引起了很多关注,并且在实现市场商业化方面取得了巨大进展。为了进一步提高设备性能,尤其是在高压,高级材料和设备制造过程中,提出了新颖的设备结构和设计的高操作频率和设备可靠性。在提出的方法中,由于其独特的优质材料特性,基于Inaln的晶格匹配的异质结构可能成为下一个下摆的首选。在本文中,结合了III III化合物半导体材料和设备领域的相对研究工作,我们简要综述了基于Inaln基于Inaln的异质结构半导体组合的艺术状态的进展。基于对基于INALN的异质结构的外延生长的分析,我们讨论了提出的脉冲(表面反应增强)金属有机化学蒸气沉积(MOCVD)的优势和成就,用于INALN/GAN异质结构的外交。
