近年来,由于各种环境污染的内分泌干扰化学物质 (EDC),人们对食品的关注度不断提高。EDC 有可能通过破坏生态平衡造成环境危害。1 主要的女性性激素 17b-雌二醇 (E2) 在 EDC 的富集过程中起着至关重要的作用。E2 是最小的天然雌激素类固醇激素,对青春期、成年期和大部分妊娠期女性生殖组织(如胸腔、子宫、肠道蠕动和阴道)的发育和调节非常重要。2,3 由于激素对环境的生理影响,天然存在的雌激素结合物已成为食品工业的一个新问题。4 在这些天然环境雌激素中,E2 的潜力远远大于主要代谢物雌三醇 (E3) 和雌酮 (E1)。 E2 被广泛用于饲料加工行业,非法用于促进动物生长、产奶量、提高牛和家禽的肥肉比例。1,5,6 尽管 E2 在女性体内发挥着一些关键作用,但当 E2 通过食物链污染进入人体时,会带来一些不良影响,如肿瘤、乳腺癌、内分泌紊乱、细胞生长异常等。7 尤其是 E2 的高活性,即使在非常低的水平
摘要 - 我们报告了ALSCN屏障宽带氮化物晶体管中铁电盖的首次观察。通过直接外观生长生长所实现的这些铁热型装置,其中一类新的铁电晶体管本身是极性的,其中半导体是极性的,并且结晶铁电屏障与底物搭配。迄今为止,此处报道的铁热室使用最薄的氮化物高和铁电屏障,以在4 A/mm处提供最高的电流,以及在任何铁电晶体管中观察到的最高速度ALSCN晶体管。ferrohemts hysteric i d-v gs环,阈值斜率低于玻尔兹曼的极限。对照ALN屏障Hemt既不表现出滞后,也不表现出子螺栓行为。这些结果将第一个外延高K和铁电屏障技术引入了RF和MM-Wave电子设备,但它们也引起了人们的兴趣,它是将数字电子中记忆和逻辑功能相结合的新材料平台。
二维早期过渡金属碳化物、氮化物和碳氮化物 (MXenes) 家族规模庞大且发展迅速,引起了材料科学和材料化学界的极大兴趣。MXenes 被发现仅十多年前,已在从储能到生物和医学等各种应用领域展现出巨大潜力。过去两年来,人们在研究 MXenes 用作润滑剂添加剂、复合材料中的增强相或固体润滑涂层时的机械和摩擦学性能方面进行了越来越多的实验和理论研究。尽管对 MXenes 在干燥和润滑条件下的摩擦和磨损性能的研究仍处于早期阶段,但由于 MXenes 具有出色的机械性能和化学反应性,使其能够适应与其他材料结合,从而提高其摩擦学性能,因此该领域的研究取得了快速发展。从这个角度来看,我们总结了 MXene 摩擦学领域最有希望的成果,概述了未来需要进一步研究的重要问题,并提供了我们认为对专家以及 MXenes 研究新手(特别是新兴的 MXene 摩擦学领域)有用的方法建议。
摘要 电池和超级电容器已成为下一代储能技术的有希望的候选者。新型二维 (2D) 电极材料的快速发展预示着储能设备新时代的到来。MXenes 是一种新型的层状二维过渡金属碳化物、氮化物或碳氮化物,由于其优异的电导率、电化学和亲水性能、大的表面积和吸引人的拓扑结构而备受关注。本综述重点介绍了使用和不使用蚀刻剂(如氢氟酸、氟化锂和盐酸)去除 MAX 相的“A”层来制备碳化钒 MXenes 的各种合成方法。目标是展示利用毒性较小的蚀刻方法来实现与传统方法制备的 MXenes 具有可比性能的 MXenes。本综述还讨论了插层对 MXene 层之间高层间距的影响以及 MXenes 作为超级电容器和电池电极的性能。最后,讨论了目前对碳化钒 MXenes 在合成、可扩展性和在更多储能设备中的应用方面的知识存在的差距。
反应性直流磁控溅射是一种理想的技术,可用于生产具有可控微结构和特性的氧化物、氮化物和碳化物薄膜。随着分压控制技术的出现,可以以接近金属(如 TiN、ZrN)的溅射速率,或至少以比传统 RF 溅射(如 TiO 2 )更高的速率溅射导电反应产物(氧化物、氮化物和碳化物)。但在沉积非导电材料(如 Al 2 O 3 和 SiO 2 )方面仍然存在严重的限制,因为在溅射靶上形成非导电层会导致电弧。虽然这些薄膜可以通过 RF 磁控管或 RF 二极管技术溅射,但对于许多应用来说,这种速率是不经济的。电源设计和构造方面的最新电子发展已经产生了能够进行双极脉冲直流操作的商用设备。该设备可以以高速率反应溅射非导电材料。所涉及的频率(kHz 至 100 kHz)比 RF 频率(13.56 MHz)低得多,并且在集成到物理系统方面出现的问题较少。控制和电子干扰问题几乎被消除。我们报告了使用这种商用设备对脉冲直流反应溅射的初步评估。
为了了解聚碳酸酯 (PC) 和磁控溅射金属氮化物薄膜之间的界面键形成,通过从头算模拟和 X 射线光电子能谱对 PC | X 界面 (X = AlN、TiN、(Ti,Al)N) 进行了比较研究。模拟预测界面处会出现显著差异,因为 N 和 Ti 与聚合物的所有功能团形成键,而 Al 仅与原始 PC 的碳酸酯基团选择性反应。与模拟结果一致,实验数据表明 PC | AlN 和 PC | (Ti,Al)N 界面主要由界面 C ─ N 键定义,而对于 PC | TiN,界面形成还以大量 C ─ Ti 和 (C ─ O) ─ Ti 键为特征。结合键强度计算和测得的界面键密度表明,PC | (Ti,Al)N 界面最强,其次是 PC | AlN,而预测最弱的是 PC | TiN 的强界面 C─N 键密度较低。本研究表明,所采用的计算策略能够预测 PC 和金属氮化物之间的界面键形成,并且可以合理地假设本文提出的研究策略可以很容易地适应其他有机|无机界面。
摘要:固态量子发射器 (QE) 是光子量子信息处理的基础。由于 III 族氮化物半导体中 QE 的制造工艺复杂,且在光电子、高压功率晶体管和微波放大器等领域的应用日益广泛,因此人们对开发高质量的 QE 产生了浓厚的兴趣。本文报道了在氮化铝基光子集成电路平台中生成和直接集成 QE。对于单个波导集成 QE,在连续波 (CW) 激发下,在室温下测得的芯片外计数率超过 6 × 10 4 计数/秒 (cps;饱和率 >8.6 × 10 4 cps)。在未图案化的薄膜样品中,在连续波激发下,室温下测量了 g (2) (0) ∼ 0.08 的反聚束和超过 8 × 10 5 cps(饱和率 >1 × 10 6 cps)的光子计数率。虽然自旋和详细的光线宽度测量留待将来研究,但这些结果已经表明,高质量 QE 有可能单片集成在各种 III 族氮化物器件技术中,这将带来新的量子器件机会和工业可扩展性。关键词:薄膜氮化铝、量子发射器、光子集成电路、单光子、宽带隙半导体、量子光子学 Q
65 • 10 -4,其中考虑了背景的斜率,这是根据 PII 峰的形状估计的。该值比 Wagenblast 和 Swarts 的值大约大 50 倍。这个高峰值表明亚稳态氮化物或薄 AlN 沉淀物的分辨率远高于 Wagenblast 和 Swarts 显示的 Fe-0.2C 中亚稳态碳化物的分辨率。但是,它并没有表明氮空位情况下的单位缺陷松弛强度比碳空位情况下的单位缺陷松弛强度高 50 倍。
陶瓷: - 离子粘合(难治性) - 金属和非金属元素的化合物(氧化物,碳化物,碳化物,氮化物,硫化物) - 脆性,玻璃状,弹性 - 非导向(绝缘体) - Ex。氧化铝(Al 2 O 3),二氧化硅(SIO 2)复合材料: - 由两种(或更多)个单个材料组成,这些材料来自上面讨论的类别。- 复合材料旨在显示每种组件材料的最佳特征-ex.fiberglass的组合,是一个熟悉的例子,其中将玻璃纤维嵌入聚合物材料中。玻璃纤维从玻璃中获取强度和从聚合物>