量子密钥分发 (QKD) 被认为是各种潜在量子技术中最直接、最广泛实施的应用。QKD 通过使用光子作为信息载体,实现远距离用户之间共享密钥。目前正在进行的努力是以稳健、紧凑的方式在实践中实现这些协议,以便在各种现实场景中有效部署。固态材料中的单光子源 (SPS) 是这方面的主要候选者。本文展示了一种室温、离散变量量子密钥分发系统,该系统使用六方氮化硼中的明亮单光子源在自由空间中运行。采用易于互换的光子源系统,生成长度为一百万位的密钥和大约 70000 位的密钥,量子比特错误率为 6%,𝜺 安全性为 10-10。这项研究展示了利用 hBN 缺陷实现的第一个概念验证有限密钥 BB84 QKD 系统。
六方氮化硼 (hBN) 已成为一种有前途的超薄单光子发射器 (SPE) 主体,在室温下具有良好的量子特性,使其成为集成量子光子网络的理想元素。在这些应用中使用这些 SPE 的一个主要挑战是它们的量子效率低。最近的研究报告称,在嵌入金属纳米腔内的多层 hBN 薄片中集成一组发射器(例如硼空位缺陷)时,量子效率可提高两个数量级。然而,这些实验尚未扩展到 SPE,主要集中在多光子效应上。在这里,研究了由在超薄 hBN 薄片中创建的 SPE 与等离子体银纳米立方体 (SNC) 耦合组成的混合纳米光子结构的量子单光子特性。作者展示了 SPE 特性 200% 的等离子体增强,表现为 SPE 荧光的强烈增加。这种增强可以通过严格的数值模拟来解释,其中 hBN 薄片与引起等离子体效应的 SNC 直接接触。在室温下使用紧凑的混合纳米光子平台获得的强而快速的单光子发射对于量子光通信和计算中的各种新兴应用非常有用。
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
5 澳大利亚悉尼科技大学变革性元光学系统卓越中心,澳大利亚新南威尔士州乌尔蒂莫 2007 年,澳大利亚 * 这些作者的贡献相同。 通讯作者 igor.aharonovich@uts.edu.au 摘要 六方氮化硼 (hBN) 中的色心已经成为集成量子光子学的有吸引力的竞争者。在这项工作中,我们对在蓝色光谱范围内发射的 hBN 单个发射器进行了详细的光物理分析。发射器采用不同的电子束辐照和退火条件制造,并表现出以 436 nm 为中心的窄带发光。光子统计以及严格的光动力学分析揭示了发射器的势能级结构,这表明缺乏亚稳态,理论分析也支持这一点。潜在缺陷可以具有在 hBN 带隙下半部分具有完全占据缺陷态和在带隙上半部分具有空缺陷态的电子结构。总的来说,我们的研究结果对于理解 hBN 中新兴蓝色量子发射器系列的光物理特性非常重要,因为它们是可扩展量子光子应用的潜在来源。简介单光子发射器 (SPE) 被广泛认为是建立和部署量子通信和计算的关键推动者,这涉及按需生成高纯度单光子发射 1-3 。六方氮化硼 (hBN) 因其独特的性质而备受关注,包括以 6 eV 为中心的宽层相关带隙、高激子结合能、存在光学活性自旋缺陷以及能够承载室温 (RT) 亮 SPE 4-11 。hBN 还因其用作深紫外范围的新兴光电材料而备受关注 12 。最近,通过阴极发光 (CL) 测量发现了在蓝色光谱范围内发射的 hBN 色心,称为“蓝色发射器” 13 。这组发射器通常显示超亮、光谱稳定和窄带发射,其零声子线 (ZPL) 始终以 436 nm 为中心 13, 14 。结果表明,这些缺陷与 4.1 eV 处的特征紫外线发射密切相关 9, 14-16 。对 hBN 进行预辐照,例如在氮气气氛中进行高温退火,可产生更高的特征紫外线发射产量,从而产生更多的蓝色色心 15 。此外,在低温下,与 hBN 中的其他量子发射器相比,这些缺陷具有稳定的发射,线宽为亚 GHz,光谱扩散最小 15 。最近,两
摘要:首次系统地研究了通过高真空化学气相沉积从硼氮烷中生长六方氮化硼 (hBN) 在外延 Ge(001)/Si 衬底上的过程。分别评估了 10 − 7 –10 − 3 mba r 和 900–980 ◦ C 范围内的工艺压力和生长温度对 hBN 薄膜的形貌、生长速率和晶体质量的影响。在 900 ◦ C 下,获得了横向晶粒尺寸约为 2–3 nm 的纳米晶 hBN 薄膜,并通过高分辨率透射电子显微镜图像进行了确认。X 射线光电子能谱证实了原子 N:B 比为 1 ± 0.1。通过原子力显微镜观察到三维生长模式。增加反应器中的工艺压力主要影响生长速率,对晶体质量的影响很小,对主要生长模式没有影响。在 980 ◦ C 下生长 hBN 会增加平均晶粒尺寸,并在 Ge 表面形成 3-10 个取向良好、垂直堆叠的 hBN 层。探索性从头算密度泛函理论模拟表明,hBN 边缘被氢饱和,并且有人提出,在装置的热部件上产生的 H 自由基部分去饱和是导致生长的原因。
摘要:光量子技术有望彻底改变当今的信息处理和传感器。许多量子应用的关键是纯单光子的有效来源。对于用于此类应用的量子发射器,或对于相互耦合的不同量子系统,量子发射器的光发射波长需要进行定制。在这里,我们使用密度泛函理论来计算和操纵二维材料六方氮化硼中荧光缺陷的跃迁能量。我们的计算采用 HSE06 函数,它使我们能够准确预测 267 种不同缺陷的电子能带结构。此外,使用应变调谐,我们可以定制合适量子发射器的光跃迁能量,以精确匹配量子技术应用。因此,我们不仅提供了为特定应用制造发射器的指南,而且还提供了一条有希望的途径来定制可以耦合到其他固态量子比特系统(例如金刚石中的色心)的量子发射器。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
摘要:从量子传感到量子计算,量子发射器在众多应用中必不可少。六方氮化硼 (hBN) 量子发射器是迄今为止最有前途的固态平台之一,因为它们具有高亮度和稳定性以及自旋-光子界面的可能性。然而,对单光子发射器 (SPE) 的物理起源的理解仍然有限。在这里,我们报告了整个可见光谱中 hBN 中的密集 SPE,并提出证据表明大多数这些 SPE 可以通过供体-受体对 (DAP) 很好地解释。基于 DAP 跃迁生成机制,我们计算了它们的波长指纹,与实验观察到的光致发光光谱非常匹配。我们的工作为物理理解 hBN 中的 SPE 及其在量子技术中的应用迈出了一步。关键词:六方氮化硼、单光子发射器、供体-受体对、量子光学■简介
悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚 韩睿,研究生 东北大学材料各向异性与织构教育部重点实验室,沈阳 110819,中国,悉尼科技大学土木与环境工程学院,悉尼,新南威尔士州 2007,澳大利亚,*Andrew Nattestad,DECRA 研究员 ARC 电子材料科学卓越中心,智能聚合物研究所,澳大利亚创新材料研究所,伍伦贡大学,伍伦贡,新南威尔士州 2525,澳大利亚,anattest@uow.edu.au (A. Nattestad),0000-0002-1311-8951 *孙旭东,教授 东北大学轧制技术与自动化国家重点实验室,沈阳 110819,中国,xdsun@neu.edu.cn (X. Sun) *黄振国,副教授 教授