钙钛矿是指一种晶体结构,并扩展到所有具有相同结构的材料,尽管它可能表现出非常不同的性质和性能。最初,钙钛矿仅表示具有 ABO 3 化学计量学晶体学家族的金属氧化物矿物。钙钛矿的起源可以追溯到 1839 年德国矿物学家古斯塔夫·罗斯在乌拉尔山脉发现富含绿泥石的矽卡岩。在这种矿物中发现了 CaTiO 3 成分,并以著名的俄罗斯地质学会主席列夫·A·佩罗夫斯基伯爵 (1792–1856) 的名字命名。此后,许多具有钙钛矿结构的金属氧化物,如 BaTiO 3 、PbTiO 3 和 SrTiO 3 ,得到了广泛的研究。许多氧化物钙钛矿被发现表现出铁电或压电特性 [1–3]。氧化物钙钛矿发现50多年后,Wells合成了一系列通式为CsPbX 3 (X=Cl, Br, I)的铅卤化物[4]。这些金属卤化物后来被证明具有钙钛矿结构ABX 3 ,其在高温下为立方结构,在低温下由四方畸变结构转变而来。CsPbX 3 的可调光电导性引起了电子性质研究的广泛关注,也催生了有机分子加成的思路[5, 6]。Weber发现有机阳离子甲铵 (CH 3 NH 3 + ) 取代Cs +形成CH 3 NH 3 MX 3 (M=Pb, Sn, X=I, Br),发表了第一份有机铅卤化物钙钛矿的晶体学研究[7, 8]。 20 世纪末,Mitzi 等人合成了大量有机-无机卤化物钙钛矿。[9–11]。有机分子(例如小分子和大分子有机阳离子)为卤化物钙钛矿注入了新的活力,使其在光电、光伏、铁磁和反铁磁以及非线性光学领域具有更多样化的结构和物理特性。除了灵活的组件和多功能功能外,低形成能使卤化物钙钛矿易于
图2在420°C下获得的Na交换TINCL的X射线衍射模式的Rietveld分析(样品A)。开圆显示了观察到的数据点,实线表示计算出的衍射模式。
自上次(第13)届世界钛会议以来,美国就一直在钛技术,产品,加工,计算建模工具和应用方面继续进行实质性进展。添加剂制造生产的钛组件已在商用和军用飞机硬件中获得了合格并实现了生产应用。已开发出新的高性能钛合金,用于更高的温度服务和需要更苛刻的静态和动态特性的应用。当前针对钛的生产过程已经进行了优化,并开发了新的过程,以进一步降低成本并提高产品质量。钛供应商,OEM,政府实验室和学术界正在紧密合作,以解决整个行业的基本问题。计算机建模现已在工业和研究设施中广泛使用,以加快这些发展的步伐和成功。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18 19 20 21 22 23 23 24 26 27 28 29 28 29 30 31 32 33 33 34 33 34 33 37 37 38 39 40 41 41 42 43 43 43 44 45 46 47 47 49 49 49 49 51 51 51 51 51 52 54 54 54 54 55 56 57 57 58 59 60 60 60 60 60
nöthnitzerstr。61,01187德累斯顿,德国2。莱布尼兹 - 固态和材料研究所研究德累斯顿,赫尔姆霍尔茨斯特拉斯20,
硅光子学目前是紧凑和低成本光子整合电路发展的领先技术。尽管具有巨大的潜力,但某些局限性,例如由于硅的对称晶体结构仍然存在。相比之下,钛酸钡(BTO)表现出强烈的效果。在这项研究中,我们证明了在硅启用硅式平台上具有高质量转移的钛酸钡铁电混合综合调制器。BTO在硅Mach-Zehnder干涉仪上提出的杂种整合表现出EO调制,其VπL低至1.67 V·CM,从而促进了紧凑型EO调节剂的实现。BTO与SOI波导的混合整合有望为高速和高效率EO调节剂的发展铺平道路。
日本制钢所和三菱化学株式会社正在 NEDO 的“节能技术战略创新计划”下,致力于电力电子用大直径块状氮化镓 (GaN) 基板的示范和开发。该示范和开发在 2021 年 5 月建立的世界上最大的 GaN 基板制造示范设施(大型示范设施)中进行。我们使用“SCAAT TM -LP”进行了 4 英寸 GaN 基板量产晶体生长实验,这是一种低成本的高质量 GaN 基板制造技术。实验结果,我们已确认 4 英寸 GaN 晶体正在按计划生长。与中试设施相比,大型示范设施的规模显著扩大,可以制造大量的 GaN 基板。未来,我们将在大型示范设施中进一步进行示范实验,旨在通过稳定供应高质量的GaN基板,为超高效器件的开发做出贡献,并于2022财年初开始向市场供应。
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能:
Ziming Chen 1 , ∗ , Robert L Z Hoye 2 , 3 , ∗ , Hin-Lap Yip 4 , 5 , ∗ , Nadesh Fiuza-Maneiro 6 , Iago López-Fernández 6 , Clara Otero-Martínez 6 , Lakshminarayana Polavarapu 6 , Navendu Mondal 1 , Alessandro Mirabelli 7 , Miguel Anaya 7 , Samuel D Stranks 7 , Hui Liu 8 , Guangyi Shi 8 , Zhengguo Xiao 8 , Nakyung Kim 9 , Yunna Kim 9 , Byungha Shin 9 , Jinquan Shi 10 , 11 , Mengxia Liu 10 , 11 , Qianpeng Zhang 12 , Zhiyong Fan 12 , James C Loy 13 , Lianfeng Zhao 14 , Barry P Rand 14 , 15 , Habibul Arfin 16 , Sajid Saikia 16 , Angshuman Nag 16 , Chen Zou 17 , Lih Y Lin 18 , Hengyang Xiang 19 , Haibo Zeng 19 , Denghui Liu 20 , Shi-Jian Su 20 , Chenhui Wang 21 , Haizheng Zhong 21 , Tong-Tong Xuan 22 , Rong-Jun Xie 22 , Chunxiong Bao 23 , Feng Gao 24 , Xiang Gao 25 , Chuanjiang Qin 25 , Young-Hoon Kim 26 , 27