Scielo预印本 - 此文档是预印本,其当前状态可在以下网址提供:https://doi.org/10.1590/scielopreprints.8185
合成氮(N)肥料在维持中国的粮食安全方面发挥了重要作用。与1970年代初的合成N肥料的生产和使用水平低相比,中国现在是全球最大的N肥料生产国和消费者。在1990年代,科学界开始对中国N肥料施用的过度使用和环境影响引起人们的关注,从那时起,越来越多的研究就确定了改善n肥料的需求。尽管其中许多担忧以N肥料为中心,这是水传播污染的非点来源,但在中国,N肥料的施用也是能源使用和温室气体(GHG)排放的主要驱动力。除了减少水传播污染和其他生态影响
肥料和石灰应用约占田纳西州大多数行农场预算(tiny.utk.edu/ fieldcropbudgets)总支出的20%。氮(N)肥料的使用量最大,代表超过一半的izer和石灰支出。鉴于对N肥料进行了大量投资,需要实施最佳管理实践以实现应用程序的效率和盈利能力。采用声音管理实践将减少与不适当的N肥料施用相关的潜在环境风险。田纳西州大多数行农作物生产商的典型n管理实践是将剩余的n肥料的推荐n分为推荐n的三分之一。图1显示了玉米植物在生长季节的氮吸收,而最活跃的n摄取时期发生在V8至V14生长阶段。因此,建议在V4到V6生长阶段玉米中的n侧n,
表 3.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔整个生长季 (GP) 收集的每月降雨量和温度数据。 ........................................................................................................... 30 表 3.2. 东部和中部 SD 种植前的土壤物理和化学特性 ........................................................................................................................... 31 表 4.1. 2022 年和 2023 年南达科他州布鲁金斯、米勒和海莫尔向日葵生长度日(基准 6.7 °C)。 ........................................................................................................... 40 表 4.2. 2022 年和 2023 年布鲁金斯不同氮肥施用率和位置下的 V-10、R-8 阶段叶片叶绿素含量(2022 年)、R-1 和 R-5 阶段叶片叶绿素含量(2023 年)、植物高度(cm)和茎直径(mm)。 ........................................................................................... 46不同氮肥施用量下向日葵 V-10 阶段叶片叶绿素含量的放置分析 Brookings 2022。 ......................................................................................... 46 表 4.4. 不同氮肥施用量下向日葵株高(cm)、茎直径(cm)的放置分析 Brookings 2023。 ............................................................................................. 47 表 4.5. 不同氮肥施用量和放置条件下 V-10、R-8 阶段(2022)的叶片叶绿素含量,R-1、R-5 阶段(2023)的叶片叶绿素含量,植物高度(cm) Miller 2022 和 Highmore 2023................ 48 表 4.6. 不同氮肥施用量和放置条件下平均 NDVI 对 Brookings 2022 和 2023 的影响。 ............................................................................................. 51表 4.8. 2022 年和 2023 年 Miller 和 Highmore 不同 N 施肥量和位置对平均 NDVI 的影响。 ........................................................................................... 52 表 4.8. 2022 年 Brookings 和 2022 年 Miller 不同 N 施肥量对平均 NDVI 的影响的放置分析。 ........................................................................... 53 表 4.9. 2022 年和 2023 年 Brookings 不同 N 施肥量和位置下向日葵的头直径(cm)、百粒重(克)、种子产量(kg ha -1 )、蛋白质浓度(g kg -1 )、油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................. 64 表 4.10. 2022 年 Brookings 不同 N 施肥量下向日葵的产量(kg ha -1 )和蛋白质浓度(g kg -1 )的放置分析。 ........................................................... 65穗直径(厘米)、百粒种子重量(克)、种子产量(千克/公顷)、Miller 2022 和 Highmore 2023 在不同氮肥施用量和地点下向日葵的蛋白质浓度(g kg -1 )油浓度(g kg -1 )和油产量(kg ha -1 )。 ............................................................................................................................. 66 表 4.12. 氮肥成本、葵花籽价格、经济最佳施氮量(EONR)。 ........................................................................................................................................... 67 表 4.13. Brookings 2022、Miller 2022、Brookings 2023 和 Highmore 2023 的收获后茎秆氮含量(kg ha -1 )。 ........................................................................................... 69 表 4.14. Brookings 2022 和 2023 深度(0-15 和 15-30 cm)的收获后土壤 NO 3 µg g -1 和 NH 4 µg g -1。 ......................................................................................................... 71 Miller 2022 和 Highmore 2023 深度(0-15 和 15-30 cm)处收获后土壤 NO 3 (µg g -1 ) 和 NH 4 (µg g -1 )。............................................................................. 72
气候变化对农作物和农业产量的影响是一个实际威胁,而这是一个充满挑战的问题,因为在农作物的局部规模上进行了介入的高度复杂性。对其进行评估,需要使用耦合模型气候 - 同时确定适合当地未来条件的管理和基因型的方法,以维持适应策略。我们介绍了基于区域脐带气候模型的新型集成气候适应支持建模系统的实施和使用,以及来自DSSAT平台的CERES玉米模型,并使用新的模块使用用于最佳管理和基因型识别的新模块:使用混合方法:确定性建模和-ML/ Genetic AlgorithM。它是作为罗马尼亚的区域飞行员运行的,与用户实时互动,进行农业气候预测(施肥,播种日期,土壤)并提供在气候变化预测下模拟的最佳作物管理。两个气候场景RCP4.5和RCP8.5和十二个管理场景的多模型集合模拟显示了该地区的新结果。对于实际基因型,我们发现在所有播种日期和测试的受精水平的气候情况下,预计平均降低产量的平均值下降,对初始土壤参数敏感的反应。这种反应与两个因素有关:较短的生长季节高达10%,并且在温暖的气候下施肥效率损失。对基因型的最高收获敏感性被证明是在温暖气候下分别为幼年为成熟阶段的热时间的变化。的警告指向结果显示农业收益的农业管理机会的范围狭窄,但在相反的情况下,最佳基因型范围识别的重要作用也可能在极端的几年中为气候变化提供农作物解决方案。在六个跨参数模拟的集合中识别最佳气候下的最佳基因型显示出最大产量的系统较低值,但强调了与实际气候相比,场景中中间产量值增加的基因型窗口。结果使用确定性耦合建模系统与数据驱动的建模相结合,以识别最佳适应性,包括施肥路径,这有助于缓解气候变化。
摘要 - 西葫芦是葫芦科家族,富含营养。在印度尼西亚,西葫芦的培养仍然很低,西葫芦具有开发的潜力。需要改进耕作技术,以确保西葫芦的最佳生长和产量。研究gberellin和氮肥对西葫芦植物生长和产量的研究。于2023年7月至2023年10月在印度尼西亚东爪哇省的Batu市进行。这项研究是使用带有两个因素的随机完整块设计的阶乘实验,第一个因素是gibberellin浓度,三个治疗水平(0、150和300 ppm),第二个因素是氮肥的剂量,具有5个治疗水平(50、100、100、100、150、200、200和250 kg/ha)。使用方差分析(ANOVA)分析了观察数据结果,并在5%的误差水平下持续诚实的显着差异测试HSD。确定观察变量之间的关系模式,进行了回归测试。结果表明,吉布雷蛋白和氮肥对西葫芦植物生长和产量的显着影响。植物长度,叶子数量,叶子面积,新鲜重量,干重,水果数量和果实重量的增加。氮肥导致植物长度,叶子数量,叶子面积,新鲜重量,干重,水果数量,水果重量和叶绿素指数的增加。这项研究的结果表明,吉布雷蛋白和氮肥在增加西葫芦植物的生长和产量中的阳性作用。基于这项研究的结果,建议最佳的吉伯林蛋白和氮为150 ppm和150-250 kg/ha。
SBTI已发布针对林业,土地和农业(FLAG)部门排放的公司(SBTI,2022年)的指导。本指南要求如果这些排放占范围1、2和3的总排放量的20%或更多,则必须根据SBTI的标志指南在FLAG部门中没有直接运营的公司在相关排放中设定目标。生产氮肥的化学公司由于农业使用了销售的氮肥,因此可以具有N 2 O的大量排放(在范围3类别11中)。如下所述,该化学部门的指导包括肥料制造商在范围上设定目标的标准。3类别从土地部门n 2 O排放。范围3中N 2 O排放的公司11类别使用出售的氮肥,应遵循本指南,而不是针对这种排放来源设定目标的SBTI Flag指南。此外,范围3中N 2 O的排放量11从使用出售的氮肥不得计算计算SBTI FLAG指南的20%适用性阈值。如果公司有其他相关的排放,则应将这些排放量考虑到20%的适用性阈值。此外,如果公司符合国旗指南中的任何其他直接适用性标准,则应遵循标志指南。
结果:我们确定了植物和微生物群落的不同反应机制,以添加氮肥和草甘膦以及季节性变化。氮肥和草甘膦显着影响的植物多样性,地上和地下生物量,C和N含量以及显着改变了主要植物的叶片面积和植物身材。但是,氮肥和草甘膦的添加并没有显着影响细菌,真菌和原生物群落的多样性和结构。氮肥的施用可以改善草甘膦对植物群落功能性状的负面影响。浮力的季节性变化显着改变了土壤的物理,化学和生物学特性。我们的结果表明,与夏季相比,秋季生态系统的土壤生态系统多功能性较低。季节性变化对植物多样性和功能性状具有重大影响。此外,季节性变化显着影响了细菌,真菌和生物的社区组成,多样性和结构。季节性变化对真菌群落组装的影响比细菌和生物学家的影响更大。在夏季,真菌群落的组装由确定性过程主导,而在秋天,它由随机过程主导。此外,细菌,真菌和生物学家之间的负相关已在秋天得到加强,并形成了一个更强大的网络来应对外部变化。
对不可再生、对环境不友好的氮肥(如无水氨和硝酸氨)的巨大依赖对美国的农业和工业都构成了重大挑战。仅在明尼苏达州,每年的氮肥进口额就达到 4 亿至 8 亿美元,凸显了当前做法带来的经济压力和环境影响。当前氮肥工业技术以哈伯-博施法为主,该法每年提供超过 1.3 亿吨氨,同时养活了全球约 40% 的人口。然而,它也造成了全球约 2% 的能源消耗和 1.5% 的温室气体 (GHG) 排放。哈伯-博施法的反应条件分别在 200 至 400 个大气压和 400 至 600°C 范围内。除了环境挑战之外,这种极端的温度和压力条件也反映了高昂的资本成本。因此,这些缺点为创新提供了机会,并且迫切需要一种更节能、更具成本效益、温室气体排放更低的工艺,以减轻环境影响并促进农业可持续发展。