生物氮固定(BNF)是一个重要的生态过程,在维持生态系统中氮的平衡中起着至关重要的作用。氮是生命的重要元素,是氨基酸,蛋白质和核酸的主要组成部分。虽然氮在地球大气中很丰富,但它主要是以惰性n 2气的形式,大多数生物都无法直接使用。生物氮固定是某些微生物将大气氮转化为植物可以容易使用的形式的过程,从而有助于生态系统的整体生产力和可持续性。负责生物氮固定的主要药物是固氮细菌,它们与植物形成共生相关性或自由存在于土壤中。这些细菌具有氮化酶,这使它们能够在大气氮中打破强三重键,并将其转化为氨(NH 3)或可以被植物吸收的相关化合物。生物氮固定的生态意义是巨大的,影响了营养循环,植物生长和整体生态系统动力学。
用户必须在使用前确保产品在其应用中的适用性。产品仅符合该和其他相关HIMEDIA™出版物中包含的信息。本出版物中包含的信息基于我们的研发工作,据我们所知,真实而准确。Himedia™实验室Pvt Ltd保留随时更改规格和信息的权利。产品不适用于人类或动物或治疗用途,而是用于实验室,诊断,研究或进一步制造的使用,除非另有说明。本文包含的陈述不应被视为任何形式的保证,明示或暗示,也不应对侵犯任何专利的责任承担任何责任。
医学人工智能(AI)服务,包括健康聊天机器人,预计对于促进医疗保健的质量,解决医疗保健资源的不平等分配,降低医疗保健成本以及提高诊断水平和效率至关重要(Guo and Li,2018; Lake et et al。,2019; Schwalbe and Wahl,2020; Lake and Li。但是,越来越多的参与者更喜欢与医生进行咨询,而不是健康聊天机器人进行医学咨询(Branley-Bell等,2023),即使他们的专业知识水平与人类医生相同的专业知识(Yokoi等,2021);在与健康聊天机器人(Fan等,2021年)进行磋商期间,有大量用户退出,其中近40%的人甚至不愿与他们互动(PWC,2017年)。值得注意的是,许多专家担心与医学AI的潜在歧视性偏见,解释性和安全危害有关的固有局限性(Amann等,2020)。例如,一项调查发现,超过80%的专业医生认为健康聊天机器人无法理解人类的情绪,并通过为患者提供不准确的诊断建议来代表误导治疗的危险(Palanica等,2019)。此外,人们认为健康聊天机器人是不真实的(Ly等,2017),不准确(Fan等,2021),可能是高度不确定和不安全的(Nadarzynski等人,2023年),导致他们在需要医疗救助的情况下使他们的脱口机或犹豫。因此,这项研究的第一个研究问题是探索哪些因素影响人们抵抗健康聊天机器人。尽管克服对AI医疗保健技术的公众抵抗对于促进其未来在医疗领域的社会接受至关重要(Gaczek等,2023),但很少有研究研究如何形成对AI医疗保健技术(例如健康聊天机器人)的抵抗行为。
可再生能源与绿色氢气生产技术的结合是我们推动可持续能源转型和减少温室气体排放的关键前沿。绿色氢气净化程序是这项努力的核心。水和可再生能源用于电解绿色氢气,绿色氢气作为清洁灵活的能源具有巨大潜力。然而,为了在包括运输在内的一系列行业中充分利用它,必须进行仔细的净化。将可再生能源转化为高质量氢燃料的过程需要精心去除污染物,例如水分、微量氧气和其他可能危及燃料电池和氢基技术效率的杂质。除了满足严格的质量要求外,这种净化程序还提高了氢气利用的能源效率,最终有助于发展更可持续的能源生态。
目标 项目目标: 1. 为 NUE 等复杂的农艺性状进行 GE 辅助品种开发的概念验证 2. 在发展中国家马达加斯加出现生物安全监管结构的背景下,分析在水稻等粮食作物上部署 GE 辅助品种的社会和制度可行性(法规、环境和社会风险、影响) 3. 通过信息交流和马达加斯加生物安全监管机构和其他利益相关者的培训,加强集体能力,以评估通过 GE 技术改良的新作物品种部署所带来的风险和机遇,并做出决策 研究问题 1. 优化水稻中的 CRISPR/Cas9 技术以同时进行 KO 和碱基替换,包括研究非整合方法, 2. 建立我们的主要目标基因 BT2/OsBT、植物氮状态、硝酸盐转运蛋白基因(如 NRT1.1/OsNRT1.1Bs、OsCCA1 和 OsELF4 时钟基因)之间的关系,拟南芥和水稻植物模型之间的 TGA 转录因子;3. 揭示与 GE 改良水稻品种的 NUE 相关的生态生理成分;4. 确定拟议的 GE 新品种的社会接受条件,考虑到对农民和当地水稻价值链其他利益相关者的潜在社会经济风险和影响;5. 解决能力建设或机构适应的需求,以实施国家生物安全立法。
摘要 传统农业导致化学品的广泛使用,进而对环境造成负面影响,如土壤侵蚀、地下水污染和大气污染。农业系统应该更加可持续,以实现经济和社会盈利以及环境保护。一种可能的解决方案是采用精准农业,这是一种双赢的选择,既能维持粮食生产,又不会破坏环境。精准技术用于收集有关田间空间和时间差异的信息,以便将投入与特定地点的田间条件相匹配。在这里,我们回顾了有关小麦作物精准氮管理的报告。目的是对小麦地点特定氮管理的方法和结果进行调查,并分析这种农业实践的性能和可持续性。在此背景下,我们分析了过去 10 到 15 年的文献。主要结论是:(a)在做出氮管理决策之前,需要测量和了解土壤的空间变异性和小麦氮状况。不同传感器的互补使用以相对较低的成本改善了土壤特性评估; (b)结果表明,机载图像、遥感和近距传感对于通过响应性季节内管理方法预测作物氮素状况非常有用;(c)红边和近红外波段可以穿透冠层的较高植被部分。这些
缩写:AEA,平均环境轴; ASI,花的时间间隔; ATC,平均测试仪坐标; DA,天数为50%; DS,天数达到50%; Easp,耳朵方面; EHT,耳朵高; EPP,每植物的耳朵; ESP1,种植后8周的Striga出现; ESP2,种植后10周的Striga出现; GCA,一般组合能力; GCA F,一般组合女性效应的能力; GCA M,一般结合男性效应的能力; GGE,基因型主要效应以及基因型X环境相互作用; IITA,国际热带农业研究所; NCD II,北卡罗来纳州设计II; PASP,植物方面; PC,主组件; PLHT,植物高度; PVA-QPM,普罗维生胺A质量蛋白玉米; QPM,质量蛋白质玉米; SCA,特定的组合能力; SDR1,Striga(宿主)种植后8周的损伤等级;种植后10周的SDR2,Striga(宿主)损伤等级; SSA,撒哈拉以南非洲; WAP,种植几周后; WCA,西部和中非。
Lee,C。&Yan,Q。 (2021)。 氮对氨的电化学减少:进步,挑战和未来前景。 电化学中的当前意见,29,100808-。 https://dx.doi.org/10.1016/j.coelec.2021.100808Lee,C。&Yan,Q。(2021)。氮对氨的电化学减少:进步,挑战和未来前景。电化学中的当前意见,29,100808-。https://dx.doi.org/10.1016/j.coelec.2021.100808https://dx.doi.org/10.1016/j.coelec.2021.100808
图 1:钻石面心立方结构内的 NV 缺陷。NV 中心由碳晶格(黑色)中空位(白色)旁边的氮取代基(蓝色)组成。量子化轴可以以相等的概率位于四个晶体取向之一。
本研究致力于脉冲直流反应磁控溅射氧氮化铪 (HfOxNy) 薄膜的技术和优化。采用田口正交表法优化 HfOxNy 薄膜的制备工艺,以获得具有最佳电气参数的材料。在优化过程中,通过对以氧氮化铪为栅极电介质的 MIS 结构的电气特性监测介电薄膜的参数。还检查了制备的 HfOxNy 层的热稳定性。结果显示,热处理后制备的薄膜的电气参数有所改善。即,我们观察到有益的平带电压 (Vfb) 值、CeV 特性的频率色散消失、有效电荷 (Qeffi/q) 降低以及所检查的 MIS 结构界面陷阱 (Dit) 密度降低。然而,与参考样品相比,介电常数值略低。证明了 HfO x N y 层在高达 800 °C 的温度下具有优异的稳定性。尽管观察到层体中结晶相的显著增加,但未发现电气性能或表面形貌的恶化。本研究的结果使所研究的采用脉冲直流反应磁控溅射制备的 HfO x N y 成为 MIS 结构和器件中栅极电介质的可能候选者。