3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 4 4 4 4 1 1 1 2 丙酮 3 3 1 1 2 1 1 1 苯乙酮 1 2 1 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 2 2 2 2 3 1 3 3 乙炔 4 2 2 2 3 3 1 3 空气 (100 °C) 2 3 1 1 3 3 1 3 空气 (150 °C) 4 4 4 4 1 3 1 3 空气 (200 °C) 1 1 1 1 3 1 3 3 乙酸铝1 2 1 1 2 2 1 2 溴化铝 1 2 1 1 3 3 1 3 氯化铝(10%) 4 4 4 4 2 1 3 2 氯化铝(100%) 4 4 4 4 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 2 2 2 1 1 1 1 铝盐 1 2 1 1 1 1 1 1 硫酸铝 3 3 3 3 1 1 1 1 明矾(NH3-Cr-K) 3 2 1 1 1 1 1 2 氨(无水) 3 3 2 2 1 1 1 1 氨(冷,气体) 3 2 1 1 2 1 3 1 氨(热、气态) 4 4 4 4 1 1 3 1 碳酸铵 4 4 4 4 1 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 2 4 1 1 1 3 1 硝酸铵 3 2 4 1 3 2 3 2 过硫酸铵溶液 3 2 3 3 3 1 1 1 磷酸铵(一元、二元、三元) 3 3 2 3 1 1 1 1 铵盐 3 3 1 1 1 1 4 1 硫酸铵 3 3 1 2 3 1 3 1 硼酸戊酯 3 3 1 2 3 1 4 4 氯化戊酯 3 3 3 2 1 1 4 1 戊基氯萘 4 4 4 4 1 1 3 1 戊基萘 3 3 2 3 1 1 3 1 动物油(猪油) 1 1 1 1 2 3 1 2 Aroclor 1248 4 4 4 4 1 3 1 1 Aroclor 1254 4 2 1 1 4 3 1 3 Aroclor 1260 4 4 4 4 3 3 1 3 芳烃燃料 -50% 4 4 4 4 3 3 1 3 砷酸 2 2 2 2 1 2 1 2 沥青 2 3 3 3 3 2 1 3 ASTM 油,n° 1 3 3 1 1 1 1 1 1 ASTM 油,n° 2 3 3 1 1 2 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 1 ASTM 油,编号 4 1
2D 和混合维度 2D/3D 钙钛矿已成为一种比 3D 钙钛矿更稳定、用途更广的太阳能电池吸收材料。[1] 然而,用于实现低维结构的大型有机间隔阳离子的绝缘性质阻碍了光活性材料中光生电荷的迁移。因此,生长具有相对于基底垂直排列的有机片的薄膜对于促进有效的电荷载流子提取至关重要。 [2] 此前,人们曾利用热铸造[3,4] 或通过使用替代溶剂(如 N,N-二甲基乙酰胺 (DMAc))[2] 或添加剂(如硫氰酸铵 (NH 4 SCN)、[5,6] 甲脒氯化物 (FACl)、[7–9] PbCl 2 [10] 和甲基氯化铵 (MACl) [11,12])修改钙钛矿 (PSK) 前体溶液来诱导此类材料的择优取向。
氯化物(硝酸银法) 氯酸盐(硫酸亚铁法) 高氯酸盐(氯化铵法) 六氯苯(帕尔弹法) 硫氰酸铅(硝酸银法) 钡盐(硫酸盐法) 钡盐(铬酸盐法) 铝(氢氧化铵法) 铝(8-羟基喹啉法) 总铅(铬酸盐法) 总铅(硫酸盐法) 硫(二硫化碳不溶性) 硫(二硫化碳可溶性) 硫化锑(高锰酸盐法) 镍(二甲基乙二肟法) 镁(听力计法) 镁(焦磷酸盐法) 钛和二氧化钛(琼斯还原剂法) 铁(琼斯还原剂法) 钾盐(四苯硼法) 锆或氢化锆(铜铁试剂法) 草酸钠(高锰酸钾法) 硝酸锶(硫酸盐法) 氧化锌(甲酸法) 硝基化合物(氯化钛法) 钾盐和钡盐(火焰分光光度法)
氯化物(硝酸银法) 氯酸盐(硫酸亚铁法) 高氯酸盐(氯化铵法) 六氯苯(帕尔弹法) 硫氰酸铅(硝酸银法) 钡盐(硫酸盐法) 钡盐(铬酸盐法) 铝(氢氧化铵法) 铝(8-羟基喹啉法) 总铅(铬酸盐法) 总铅(硫酸盐法) 硫(二硫化碳不溶性) 硫(二硫化碳可溶性) 硫化锑(高锰酸盐法) 镍(二甲基乙二肟法) 镁(听力计法) 镁(焦磷酸盐法) 钛和二氧化钛(琼斯还原剂法) 铁(琼斯还原剂法) 钾盐(四苯硼法) 锆或氢化锆(铜铁试剂法) 草酸钠(高锰酸钾法) 硝酸锶(硫酸盐法) 氧化锌(甲酸法) 硝基化合物(氯化钛法) 钾盐和钡盐(火焰分光光度法)
摘要 钻探油气井过程中最重要的挑战之一是处理页岩地层和随后的页岩膨胀。在本研究中,我们利用羧甲基三甲基氯化铵 (CTAC) 来抑制页岩膨胀,代表了这种特殊阳离子表面活性剂的一种新应用。我们进行了几项实验来评估 CTAC 在防止页岩膨胀方面的有效性并深入了解其潜在机制。此外,根据结果,CTAC 在低浓度下非常有效,可以与其他常见添加剂一起使用。此外,在膨润土混合物中存在 1 wt.% 的 CTAC、十六烷基三甲基溴化铵 (CTAB) 和氯化钾 (KCl) 时,接触角分别为 77°、75° 和 38°。此外,通过添加 CTAB,简单和完全钻井泥浆中的总页岩回收率分别增加了 5.53% 和 0.94%。同时,在CTAC存在下,增幅分别为12.37%和6.43%。此外,在完整钻井泥浆中加入CTAC和CTAB分别使膨胀减少了9.94%和4.2%。最后,对比研究表明,CTAC作为一种新型抑制剂的效果优于CTAB和KCl作为常规抑制剂。
基于金属卤化物钙钛矿的串联太阳能电池有望实现超越单结太阳能电池理论极限的功率转换效率。然而,克服宽带隙钙钛矿太阳能电池中存在的显著开路电压不足仍然是实现高效稳定的钙钛矿串联电池的主要障碍。本文报道了一种通过氯化物添加剂设计钙钛矿结晶途径来克服 1.8 eV 钙钛矿太阳能电池挑战的整体方法。结合使用自组装单层作为空穴传输层,实现了 1.25 V 的开路电压和 17.0% 的功率转换效率。阐明了甲基氯化铵添加的关键作用,即促进富含氯化物的中间相的生长,从而引导所需立方钙钛矿相的结晶并诱导更有效的卤化物均质化。形成的 1.8 eV 钙钛矿表现出抑制卤化物偏析和改善的光电性能。
从Lipografter®系统中表征脂肪酸的脂肪酸盐过量的脂肪酸盐被置于无菌50ml离心管中,并运送到MTF生物制剂以进行表征。在1倍磷酸盐缓冲盐水(PBS)中洗涤脂肪酸2-3次,直到组织颜色为淡黄色。添加了涉及0.1%胶原酶型IA溶液(Sigma-Aldrich Inc.,GA)的修改隔离方案2后,添加了一个修改的隔离方案2,并在37ºC的水浴中孵育2小时(在搅拌下)。消化后,组织显得光滑,胶原酶消化被相等的维护培养基灭活,由DMEM/F12,10%胎牛血清(FBS)和1%青霉素/链霉菌素/链霉菌素(Fisher Scientific,PA)组成。然后将溶液离心以收集SVF颗粒。然后将SVF颗粒重悬于氯化铵溶液中,并在室温下孵育10分钟,以帮助裂解红细胞。最后,将溶液离心以隔离
A533B 不锈钢,464 氢气吸收,5 醋酸盐,59,60 酸性燃烧残留物,104 活性滑移面,88 铜的吸附原子,78 氢气吸附,5 AGA 管道研究委员会,152-153 空气,6-7,319,335 铝合金中的开裂,334,374 在负载试验中,007,303,347 在超级合金测试中,303,319 航空发动机,103 AISI 41XX 钢,137 AISI 431 钢,505,506 AISI 4340 钢,5-7,103 AISI 不锈钢,266 合金 825,505,506 合金,5,31铜金,76,78,86 在酸性环境中,136 钢,5,7,136 铝合金,334,374,393,2024,348 2024 T351,348,374 7075 T6,348,393 7075 T651,334,393,395 7075 T7351,334 铝锂合金,334 美国石油协会 (API) 规范 5AC,137 氨溶液和黄铜,88 氯化铵,103 硝酸铵,104 阳极极化,76 API 5LB 钢,170 API 5LX X65 钢,170 API 规范 5AC,136-7水环境(另见地下水、海水、溶液化学和水),103,495 ASME 锅炉和压力容器规范,第 XI 节,附录 A,283,463
预防微生物感染是一项全球性挑战。有效的抗菌涂层可在接触后迅速杀死微生物,有助于最大限度地减少微生物的传播。然而,它们的可扩展合成具有挑战性。这项工作展示了自消毒纳米薄膜的可扩展合成和表征,用于医院相关表面的后期改造。它们的抗菌作用基于超带电阳离子表面膜和带负电的细菌膜之间的电荷相互作用。在棉布(防护服)、丁腈橡胶(防护手套)和玻璃表面(桌子、屏幕)上,使用光引发本体聚合风干的 [2-(甲基丙烯酰氧基) 乙基] 三甲基氯化铵薄膜来增强其带电性,并通过流动电位测量进行研究。通过光谱成像椭圆偏振法和 X 射线光电子能谱法的组合,可以看到以阳离子季胺基团为主的 6 纳米厚涂层。涂层表面的抗菌体外评估表明,在不到 5 分钟的时间内,细菌数量减少了约 4 个对数。共聚焦激光扫描显微镜和活死染色证实了表面诱导的细菌杀灭作用。该涂层的一系列兼容材料及其快速杀菌活性可以对抗细菌的表面传播,并可能有助于遏制传染病的传播。它在环境条件下的合成有望融入工业流程。
1.3.1酒精饮料应不受氯氢氯化物,氯化铵,丙二醛,吡啶,地西ep剂或麻醉性,包括咖啡因在内的精神物质。1.3.2 1 [乙基酒精含量的公差限制为20%ABV的公差应为±0.3%(每瓶90毫升最高90毫升)和20%以上的ABV(应为±1.0%)(每瓶最多90毫升)。在葡萄酒的情况下,公差极限应为±0.5。]1.3.3可以添加糖以从酒精饮料中四舍五入。1.3.4用于稀释强度的水的水应符合印度饮用水标准中规定的要求,为:10500,不时修订。1.3.5酒精饮料可以根据食品安全和标准(食品标准和食品添加剂)法规允许的添加剂,酶和加工辅助工具,2011年。1.3.6标记为“成熟”时的任何酒精饮料,应在橡木或其他合适的木桶或桶或木片中成熟一年不少于一年。1.3.7如果与“老年人”一词一起提出年龄主张,则年龄必须指融合中最年轻的精神。1.3.8 FSSAI规定的“食品分析方法 - 酒精饮料的方法”,应不时修订。1.3.9酒精饮料应按照食物安全和标准(包装和标签)规定中的规定包装在合适的容器中,2011年: